Заземление в частном доме: схема и алгоритм действий, виды контуров
Соединение металлических частей электросетей и приборов с заземляющим контуром называется заземлением. В случае пробоя изоляции весь потенциал сети уходит в землю или её эквивалент. Если заземление отсутствует или установлено неправильно, прикосновение к электрооборудованию может закончиться для человека смертельным ударом тока.
Необходимость проведения заземления в частном доме или на даче
Нужно ли заземление в доме? Да, ведь оно необходимо для обеспечения безопасности человека. Ток выбирает проводник с минимальным сопротивлением. Этот показатель у заземляющего контура ниже, чем у человеческого тела. Поэтому в случае попадания напряжения фазы на открытую часть прибора, ток «стекает» в землю. Опасность для жильцов дома сведена к минимуму. Заземление продлевает срок работы электрооборудования, обеспечивает его нормальную и бесперебойную работу. Защищает от скачков напряжения и помех электросети. Правила ПУЭ, ПТЭЭП, ГОСТы и ПТБ требуют установки системы заземления. При её отсутствии поставщик электроэнергии имеет право отключить подачу электричества. Более того, современные приборы имеют специальные выводы и требуют соединения с заземляющим контуром.
Отличие заземления от громоотвода
Молниеотвод и система заземления схожи по принципу действия, но предназначены для разных целей. Если разряд молнии попадёт во внутреннюю электросеть, может произойти расплавление и возгорание проводки. Громоотвод перехватывает прямой удар молнии. Далее по внешним электрическим отводам токи «стекают» к заземлителю, который рассеивает их в земле. Разводка у заземления и молниеотвода должна быть разной. Подземный контур может быть общим, если есть запас по сечению.
Молниеотвод представляет собой обыкновенную антенну, индуцирующую в себе токи от атмосферного электричества. Благодаря этому устройству атмосферное электричество идёт мимо здания, не нанося ему и жильцам вреда. Громоотводы бывают активные и пассивные. Первые производят электроразряд и «привлекают» к себе молнию. Такие молниеотводы получили широкое применение в Европе и США. Российское законодательство устанавливает правила монтажа пассивных систем молниезащиты. В зависимости от строения они бывают сетчатыми, стержневыми и тросовыми. Сетчатые системы монтируются исключительно на крыше. Две другие конструкции можно располагать как на кровле, так и рядом с домом.
Отличие заземления и зануления
Назначение этих электросистем одинаковое – в случае пробоя изоляции защитить человека от удара электрическим током. При занулении металлические нетоковедущие части приборов соединяются с нулевым защитным проводником. При пробое изоляции происходит сопряжение двух фаз, которое приводит к короткому замыканию. Срабатывает защитный автомат и электропитание отключается. С помощью зануления старую электропроводку адаптируют под трёхжильное оборудование европейского стандарта. При защитном занулении подача электроэнергии отключается за доли секунды. При заземлении опасный ток тут же уходит в грунт. Напряжение с корпуса оборудования уходит. Доля тока, получаемая человеком минимальна и не опасна для жизни. Чтобы выполнить монтаж зануления, понадобятся профессиональные знания электротехники, расчёты, выбор точки соединения. Если нулевой провод в распредщите оборвётся, схема не будет функционировать. Прикоснувшись к поверхности оборудования под напряжением, человек или животное получит удар током. В этом отношении система заземления более эффективна и долговечна – жила РЕ не перегорает и не обрывается. Для надёжности рекомендуется ежегодно подкручивать клемму. Заземляющий контур также необходимо периодически проверять – сварные стыки может разъесть коррозия.
Виды заземления частных домов
- S – разделенный рабочий и защитный нулевой провод;
- N – нейтраль;
- I – изолированная;
- T – земля;
- C – комбинированный рабочий и защитный нулевой провод.
Для дач и частных домов обычно используют схемы TN-C-S и TT. Они просты и могут быть выполнены без привлечения профессиональных электриков.
Система TN-C-S
TN-C-S стало компромиссным вариантом между устаревшей системой прошлого века TN-C и современной схемой TN-S. Объединённый проводник PEN разделяется на две жилы: PE (заземляющая) и N (нейтраль). Эти обе шины подсоединяются к соответствующим контактам электрической розетки. Жила PE неразрывна по всей длине и подключается к открытой части прибора. N выводится к питающим контактам розеток.
На пути от электрической подстанции до вводного домашнего щитка идёт имеющаяся линия с проводником PEN. На вводе в здание жила PEN разделяется на два провода: PE (заземляющая) и N (нейтраль). Точка разделения соединяется с контуром заземления дома. К жилому помещению подводится жила PE. При однофазном питании прокладывается трёхжильная проводка (L, N, PE). В случае трёхфазной сети используются пятижильный кабель (A,B,C,N,PE).
Преимущества системы TN-C-S:
- простота конструкции;
- меньшая стоимость монтажа по сравнению с TN-S;
- высокая степень защиты от удара электротоком.
- при обрыве жилы РЕ до его расщепления металлические поверхности оборудования будут находиться под опасным напряжением.
Система TT
Такую схему применяют в небольших частных коттеджах с одним фазным напряжением и двухпроводным кабелем на вводе. К контуру заземления рядом с домом подводится проводник PE, который используется только в качестве нулевого провода N. На заземляющий контур выводятся жилы розеток и контакты с металлических корпусов бытовых устройств. Электросеть дома имеет отдельное глухое заземление, не связанное с заземлением электрической подстанции.
Схема ТТ используется, если кабели TN-C-S не соответствуют требованиям гл. 1.7 ПУЭ – не обеспечивается безопасность и защитное заземление.
Монтаж защиты дома по системе ТТ выполняется при неудовлетворительном техническом состоянии воздушной ЛЭП. Пункт 1.7.109 ПУЭ требует заземлять жилу PEN на опорах, по которым она проходит. При многолетней эксплуатации заземление электрических столбов может выйти из строя. При обрыве кабеля и отсутствии дополнительного заземления открытые части электроприборов могут оказаться под опасным напряжением.
Преимущества системы ТТ:
- лёгкость монтажа;
- повреждение ЛЭП не создаёт опасности для жизни людей;
- при установке не нужно менять питающую линию.
- необходимо устанавливать устройство защитного отключения, что делает систему дороже и сложнее.
Контур заземления и его виды. Правила и требования к контуру заземления
Заземляющий контур представляет собой систему металлических стержней, вбитых вертикально в землю рядом с защищаемым зданием. Конструкция изготавливается чаще всего из стали, которая в силу малого электрического сопротивления мгновенно отводит ток в землю.
Металлические пруты устанавливаются в грунте на глубине 3 м. Далее эти проводники соединяются между собой металлическими пластинами, которые подсоединяются через электрозитовое оборудование к внутренней подсистеме здания. От щита заземляющие кабели идут к розеткам, замыкаются на внешние поверхности электроприборов. При пробое изоляции оборудования ток уходит по жилам заземления в грунт.
Существующие виды
При монтаже заземления частного дома или дачи используют два типа контуров:
- треугольный;
- линейный.
При треугольном контуре три стержня соединяются между собой равными по длине пластинами в замкнутую фигуру. Сторона треугольника должна быть не меньше длины закопанной части проводника. Для проводников используют круглую стальную арматуру или уголки. Чтобы электроды легче забивались в землю, их необходимо заострить.
Линейный контур составляют из нескольких проводников по прямой или полукругом. Такая система используется на ограниченных по площади участках. Металлические пруты забиваются на расстояние не меньше длины подземной части. Минус этого варианта – больший расход проводников.
Если площадь участка позволяет, замкнутый контур допускается монтировать в форме круга, квадрата, любого другого многоугольника. Понадобится больше металлических стержней.
Требования и правила
От соблюдения определённых норм зависит эффективность работы контура.
- При напряжении 380 В суммарное сопротивление системы должно быть не выше 4 Ом. При 220 В – 8 Ом.
- Расстояние от контура до здания должно быть не меньше 1 метра и не больше 10 метров.
- Проводники соединяются между собой только сваркой. К электрощиту электроды можно подключать болтами.
- Металлические штыри забиваются в землю на глубину не более 3 м. Длина над поверхностью грунта для соединения пластинами составляет 20-25 см.
- Толщина электрического кабеля между электрощитом и контуром составляет не менее 16 мм.
Металл забиваемых в землю штырей не должен подвергаться коррозии, иначе повысится электрическое сопротивление проводника и контур не сможет нормально функционировать. Внешняя конструкция располагается ниже глубины замерзания грунта, чтобы земля не поднимала стержни. Металлические проводники должны быть достаточно прочными.
Формулы для расчёта параметров, необходимых при заземлении дома
В основе вычислений – расчёт сопротивления среды проходящему электрическому току.
Сопротивление грунта
Формула для одного штыря:
где Т – длина от середины штыря до поверхности грунта в метрах;
ρэкв – эквивалентное удельное сопротивление почвы (зависит от вида грунта и берётся из таблицы 1);
d – диаметр штыря в метрах;
L – длина штыря в метрах.
Вид грунта | ρэкв, Ом*м |
---|---|
Песок, если уровень подпочвенных вод до 5 метров | 500 |
Песок, если уровень подпочвенных вод ниже 5 метров | 1000 |
Торф | 20 |
Рыхлая горная порода (супесь) | 150 |
Глина | 60 |
Почва | 50 |
Параметры электродов заземления
Количество контурных стержней рассчитывается в соответствии со следующей формулой:
где Ro – расчётное сопротивление;
Rн – предельное суммарное сопротивление контурной конструкции (60 Ом при напряжении 127-220 В, 15 Ом при 380 В);
Ψ – климатический коэффициент (берётся из таблицы 2).
Тип проводника | Природно-климатическая область | |||
I | II | III | IV | |
Вертикальный штырь | 1,8 — 2 | 1,5 — 1,8 | 1,4 — 1,6 | 1,2 — 1,4 |
Горизонтальный штырь | 4,5 — 7 | 3,5 — 4,5 | 2 — 2,5 | 1,5 |
Размеры стержней подбираются в зависимости от погодных условий с учётом следующих рекомендаций:
- Минимальная ширина пластины для связки стержней – 1 см. Толщина – более 3 см.
- Минимальная толщина стенок трубы – 0,3 см.
- Толщина стенки уголка – 0,4 см.
- Диаметр стального штыря – как минимум 0,14 см.
Металлические пруты погружаются в землю на 0,2 м ниже границы замерзания грунта. Длина стержней не меньше 150 см. Расстояние между проводниками равно как минимум длине электрода (не меньше 2 м).
Алгоритм заземления своими руками
Сначала проектируется схема контура заземления. Если площадь придомового участка позволяет, самая распространенная форма – равносторонний треугольник. Вертикальные стержни образуют вершины, связка выполняется стальными полосами. При недостаточной площади проводники выстраивают линейно (прямая, полукруг, зигзаг).
Выбор материалов
Чтобы контур заземления эффективно справлялся со своей задачей, он должен быть высокопрочным. Важно низкое электрическое сопротивление и устойчивое соединение всех элементов системы.
Стержни лучше выбрать из прочной нержавеющей стали, выдерживающей удары при вбивании. При достаточном сечении штыря электрическое сопротивление отвечает требованиям нормативов для заземления. Для проводников выбирают следующие материалы:
- Стальная трубка диаметром от 5 см. Стенки толщиной от 0,4 см. чем твёрже и суше грунт, тем толще должны быть стенки трубы. При засухе сопротивление почвы повышается, и контур может не сработать. Тогда в места залегания электродов заливают солевой раствор, благодаря чему ток легче рассеивается в земле.
- Гладкий стальной прут диаметром от 0,16 см. Арматуру использовать не рекомендуется – материал не выдерживает высокие температуры, а шероховатая поверхность повышает электрическое сопротивление.
- Уголок 0,5 на 0,5 см. Чтобы легче забить в грунт, нижнюю часть заостряют. Толщина стенки уголка – от 0,4 см.
Металла для связки проводников может быть изготовлен из следующих материалов:
- Жила из меди сечением не менее 10 кв.мм.
- Стальная пластина с сечением как минимум 48 кв.мм.
- Полоски алюминия сечением 16 кв.мм.
Самый распространённый материал – пластины из стали. Сварочное соединение с проводниками получается качественным. Связка на основе цветных металлов выполняется сваркой и болтами с шинами.
Пошаговая инструкция заземления дома своими руками
Теоретические вопросы рассмотрены. Как выполнить установку заземляющего контура на практике? Подготовьте следующие инструменты:
- перфоратор для измельчения камней в грунте;
- сварочное оборудование для соединения элементов контура;
- ударный молот для вбивания стержней в грунт;
- аппарат для резки металла;
- лопата с заострённым концом;
- совковая лопата.
Контур монтируют в удалённой придомовой зоне, недоступной для человека и животных. Во избежание электрических травм лучше обнести место заземления ограждающей конструкцией. Расстояние до фундамента – не менее 1 м. в грунте ставят отметки для электродов.
Следующий этап – разметка под контур, вывод проводника. Выкапывается траншея высотой от 0,5-0,6 м. Вбиваются стальные стержни на глубину примерно 2-2,5 м. Штыри соединяются металлическими полосами.
После сварных работ траншея заливается соляным раствором и засыпается. Для приготовления солевого раствора 3 пачки соли смешивают с 10 литрами воды. Такой раствор понижает сопротивление грунта и облегчает стекание тока в землю.
Конец металлосвязки подводится к внутренней системе заземления дома. С помощью болтов выполняется соединение с электрощитом здания. Подключение заземления в частном доме выполнено.
Проверка правильности монтажа
Для профессионального контроля системы используются специальные приборы для измерения сопротивления (Ф4103-М1). Если такого оборудования под рукой нет, проверить монтаж можно простой лампой накаливания 100-200 Вт. Одну жилу патрона подсоединяем к фазе, а вторую к системе заземления. Яркий свет лампы указывает на верную установку контура. При отсутствии горения или тусклом свете следуют проверить качество сварные швы.
Заземление в частном доме при напряжении сети 220 В и 380 В
Внешняя схема заземления дома для обоих вариантов одинаковая. А вот разводка жилы на вводе в здание разная.
При напряжении 220 В используется двухжильная ЛЭП. Один кабель разделяется на N и PE. Второй провод подключается к изоляторам.
При 380 В ЛЭП состоит обычно из 4-х проводов. Одна жила расщепляется на «нейтраль» и «землю». Оставшиеся провода подключаются к изоляторам. К дифференцированному автомату через устройство защитного отключения подводится фаза и нейтраль.
Ошибки монтажа и способы их устранения
При самостоятельной установке встречаются следующие ошибки:
- Для проводников используется слишком тонкий профлист. Такой материал быстро подвергается коррозии, вследствие чего увеличивается сопротивление проводника. Система заземления становится неэффективной.
- Проводники окрашивают во избежание коррозии. Подобные действия препятствуют прохождению электрического тока.
- Подключение медных проводов к алюминиевым. Возникает контактная коррозия, препятствующая прохождению тока.
- Контур на большом расстоянии от здания, что приводит к увеличению электрического сопротивления.
Недостатки монтажа необходимо немедленно исправить. Если контур имеет высокое электрическое сопротивление или имеют место разрывы цепи, система заземления не защитит от удара током.
Контур несложно выполнить своими силами. Необходимо выбрать подходящую схему, закупить материалы. Дорогостоящие инструменты целесообразнее взять напрокат. Прокопать траншею можно самостоятельно или нанять рабочих.
Правильное заземление дома гарантирует безопасность вам и вашим близким. Чтобы контур функционировал правильно, необходимо выполнить грамотные расчёты, разработать план и надлежащим образом провести монтаж.
Заземление. Что это такое и как его сделать (часть 3)
В этой части я расскажу о современных способах строительства заземлителей, которые обладают достоинствами традиционных способов строительства и лишены их недостатков.
Д. Основные способы строительства
Д1. Модульное заземление (для обычных грунтов)
Д1.1. Особенности решения
Д1.1.1. Универсальность и простота применения
Д1.1.2. Долгий срок службы
Д1.1.3. Зависимость уменьшения сопротивления заземления от увеличения глубины электрода
Д1.1.4. Суперкомпактность
Д1.1.5. Никакой сварки
Д1.2. Расчёт получаемого сопротивления заземления
Д1.3. Монтаж
Д1.4. Достоинства и недостатки
Д2. Электролитическое заземление (для вечномёрзлых или каменистых грунтов)
Д2.1. Особенности решения
Д2.1.1. Простота применения в вечномёрзлых или каменистых грунтах
Д2.1.2. Компактность
Д2.1.3. Образование талика
Д2.1.4. Никакой сварки
Д2.2. Расчёт получаемого сопротивления заземления
Д2.3. Монтаж
Д2.4. Достоинства и недостатки
Д. Основные способы строительства
- простота
- дешевизна материалов и монтажа
- доступность материалов и монтажа
- высокая стоимость доставки материала на объект
- необходимость применения большого объема грубой силы
- необходима сварка
- большая площадь, занимаемая заземлителем
- небольшой срок службы электродов в 5-15 лет
- неудобный монтаж
- высокая эффективность
- компактность
- сезонная НЕзависимость качества заземления
- высокая стоимость буровых работ
- необходима сварка
- небольшой срок службы электродов в 5-15 лет
В конце двадцатого века было разработано решение, которое обладает достоинствами обоих описанных выше способов, не имея присущих им недостатков.
Кроме того, сильное влияние засоления грунта на снижение сопротивления заземления (п. Г1.5.) настолько привлекло внимание инженеров, что было найдено “лекарство” от недостатков этого метода — вымывания соли из грунта и коррозии электродов. Оно породило очень интересный способ строительства заземлителя, применимый даже там, где пасуют простые металлические электроды — в вечномёрзлых, а также каменистых грунтах.
Д1. Модульное заземление (для обычных грунтов)
Идеальным сочетанием вышеописанных свойств способов строительства был бы какой-то способ, имеющий такой набор:
- простота
- дешевизна материалов и монтажа
- доступность материалов и монтажа
- высокая эффективность
- компактность
- сезонная НЕзависимость качества заземления
- нет
- сократить длину (глубину) монтируемых заземляющих электродов для удобства их ручного монтажа (чтобы не забивать эти электроды со стремянки)
- оставить большую длину (глубину) заземляющих электродов
- убрать буровую установку
- убрать кувалду
- убрать сварку
- увеличить срок службы электродов без увеличения размеров до… ну пусть будет 100 лет 🙂
- сохранить адекватную стоимость материалов.
При таком способе строительства заземляющий электрод необходимой длины (глубины) представляет собой сборную конструкцию из нескольких коротких (1,5 метра) стальных штырей-модулей, имеющих небольшие поперечные размеры (диаметр менее 20 мм) с цинковым или медным покрытием, которые соединяются последовательно друг за другом. Для заглубления используется обычный бытовой электрический отбойный молоток с достаточной энергией удара.
Как и в случае “обсадной трубы” (п. Г2) — большая площадь контакта заземлителя с грунтом достигается большой длиной (глубиной) электрода. За счет достижения глубинных слоев грунта, в большинстве случаев имеющих меньшее удельное электрические сопротивление, такой способ имеет большую эффективность (меньшее сопротивление заземления).
Соединение штырей между собой может производится несколькими способами:
- «глухое отверстие + шип». На одной стороне штыря имеется глухое отверстие глубиной 50-70 мм, а на другой стороне — шип длиной 50-70 мм, имеющий диаметр чуть больше паза. При монтаже шип запрессовывается в отверстие.
Такая глубина является компромиссом между максимальной энергией удара отбойного молотка, силой трения между монтируемым электродом и грунтом, механической прочностью муфты (её стоимостью). Без увеличения энергии удара невозможно еще большее заглубление электрода из-за силы трения. При увеличении энергии удара необходимо увеличивать прочность муфты, что вызывает увеличение её стоимости.
Д1.1. Особенности решения. Антикоррозионные свойства.
Д1.1.1. Универсальность и простота применения
Это решение можно назвать “конструктором”, т.к. из унифицированных элементов собирается любая необходимая конструкция. Например, глубинный электрод на 30 метров.
Все детали имеют промышленное производство, что убирает необходимость что-то “допиливать” на объекте. При этом они имеют одинаковое качество и одинаковые свойства, что играет роль при проведении большого объёма монтажных работ на множестве однотипных объектах, а также положительно влияет на предсказуемость результатов.
Обращение со штырями облегчено, т.к. они имеют длину всего 1,5 метра и вес не более 3-х килограмм. Это позволяет перевозить их в небольшом легковом автомобиле.
Д1.1.2. Долгий срок службы
Покрытие стального штыря слоем цинка или меди увеличивает его срок службы до нескольких раз (относительно срока службы штыря таких же размеров без покрытия).
Способы защиты стали от коррозии у покрытий сильно различаются из-за разного участия этих металлов в электрохимических реакциях, оказывающих наиболее разрушительное влияние на штырь. Из-за разности этих реакций, разности производства, разности стоимости производства — ведутся постоянные споры, какое покрытие всё-таки лучше.
В паре “цинк-железо” цинк является восстановителем/ донором (wiki). Окисляется/ корродирует прежде всего именно цинк, защищая, таким образом, железо.
Когда вся его масса проучаствует в реакции (окислится) — начнет корродировать сталь.
- отсутствие необходимости механической защиты покрытия при монтаже. Повреждение целостности покрытия не приводит к последствиям, т.к. цинк всё равно защищает железо, находясь рядом.
- дешевое, налаженное и широко распространенное производство оцинкованных изделий со стандартной для этого материала толщиной покрытия от 5 до 30 мкм (“горячее” и “холодное” цинкование)
- антикоррозийная защита не только штырей, но и всех металлоконструкций в зоне действия. Однако эти металлоконструкции чаще всего не нуждаются в такой защите.
- сравнительно небольшое увеличение срока службы штыря из-за малой толщины покрытия — до 15-25 лет.
- Толстый слой цинкового покрытия имеет высокую стоимость. Кроме того, очень редко встречается производство, имеющее техническую возможность для этого.
- сокращение срока службы штырей в присутствии большого количества металлоконструкций, расположенных рядом с ними
В паре “медь-железо” медь является окислителем, а железо — восстановителем/ донором (wiki). Окисляется/ корродирует прежде всего железо, защищая таким образом медь.
Странно… нам необходимо противоположное действие. Но тут кроется особенность электрохимической реакции: она возможна только в присутствии электролита/ воды. Если железо изолировать от него, то реакция останавливается.
Поэтому медное покрытие должно быть толстым и однородным для того, чтобы не допустить его глубокого повреждения при монтаже и таким образом не допустить попадания электролита/ воды к железу.
При этом положительно сказывается мягкость/ пластичность чистой меди: она сильно уменьшает силу трения при сцарапывании, что не позволяет острому элементу в грунте (например, камню) полностью процарапать покрытие по глубине — до стального сердечника. Камень просто скользит по поверхности, снимая небольшой наружный слой. Такое поведение меди можно сравнить с мылом, используемым для снятия застрявшего на пальце кольца.
- очень большой срок службы омеднённого штыря — до 100 лет (при соблюдении целостности покрытия)
- необходимость создания покрытия большой толщины (от 200 мкм) для его защиты от глубокого повреждения при монтаже. Такое покрытие дороже более тонкого.
- дорогостоящее и редкое производство омеднённых изделий с большой толщиной покрытия
Моё субъективное мнение
Раз уж добавляем покрытие для защиты от коррозии, то оно должно обеспечивать наиболее долгий срок службы при одинаковой стоимости производства (в сравнении с другими вариантами).
В этой плоскости я считаю, что лучшим выбором являются омеднённые штыри при условии безоговорочного качества покрытия, выраженного в:
— толщине не менее 200 мкм
— высокой адгезии (wiki) обеспечивающей сохранение защитного слоя при изгибе штыря (иногда встречается при монтаже)
Причём омеднённые штыри гораздо выгоднее оцинкованных из-за высоких цен на изготовление последних при стремлении достигнуть сопоставимый срок службы.
Испытания, проведённые одной из лабораторий экспериментально показали, что срок службы омеднённого штыря с покрытием толщиной 250 мкм в агрессивном грунте (кислом или щелочном) составляет не менее 30 лет, а в обычном суглинке достигнет 100 лет.
Также известно испытание, проведённое с 1910 по 1955 год Национальным Институтом Стандартов и Технологий США (The National Institute of Standards and Technology (NIST)). Было реализовано обширное исследование подземной коррозии, во время которого 36 500 образцов, представляющих 333 разновидности покрытий из черных и цветных металлов и защитных материалов, подвергались испытанию в 128 местах по всей территории Соединенных Штатов.
Одним из результатов этого исследования стал факт, что штырь заземления, покрытый 254 мкм меди, сохраняет свои технические характеристики в течение более 40 лет в большинстве типов почвы. А стержневые электроды, покрытые 99,06 мкм цинка, в этих же грунтах могут сохранять свои качества лишь в течение 10-15 лет.
Underground corrosion (United States. National Bureau of Standards. Circular 579)
Автор: Melvin Romanoff; Издатель: U.S. Govt. Print. Off., 1957)
Отдельно хочу отметить использование в качестве материала штырей нержавеющей стали . Этот материал имеет замечательные антикоррозионные свойства в сочетании с отличными механическими характеристиками , облегчающими производство деталей. Его единственный, но перечеркивающий достоинства недостаток — высокая стоимость .
Д1.1.3. Зависимость уменьшения сопротивления заземления от увеличения глубины электрода
Т.к. данное решение имеет все свойства глубинного заземлителя напомню его особенность (из п. Г2.1).
При увеличении глубины электрода необходимо учитывать, что в однородном грунте сопротивление заземления снижается не пропорционально этому увеличению (больше глубина -> меньше уменьшение сопротивления).
Поэтому при отсутствии на глубине слоев грунта с более низким удельным электрическим сопротивлением стоит рассмотреть вопрос увеличения количества электродов, а не увеличения глубины одиночного электрода. На решение этого вопроса будут влиять и стоимость монтажа дополнительных электродов, и доступность площади для их размещения.
На практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности.
Д1.1.4. Суперкомпактность
Небольшая длина штырей и использование небольшого по величине электроинструмента позволяет монтировать глубинные заземлители там, где раньше это было в принципе невозможно: на объектах при самой стеснённой внутриквартальной застройке и даже в подвалах зданий. При проведении работ вне здания для заглубления электрода достаточно “пятачка” земли диаметром 20 см.
Такая компактность особенно актуальна в свете необходимости получения большого количества документов на вскрытие покрытия, проведения работ и последующего облагораживания территории.
Д1.1.5. Никакой сварки
Все элементы конструкции надежно сопрягаются без электро или газосварки. Используются либо неразъёмные, либо резьбовые соединения. Для присоединения к смонтированному электроду заземляющего проводника используется специальный болтовой зажим из латуни или нержавеющей стали.
Д1.2. Расчёт получаемого сопротивления заземления
Расчёт почти полностью повторяет расчёт одиночного электрода из п. Г2.2. за исключением поперечных размеров — у модульного заземления диаметр электрода не превышает 20 мм.
На примере тридцатиметрового составного электрода из омеднённых штырей диаметром 14 мм, смонтированного в канаве глубиной 0,5 метров. Грунт, в котором будет монтироваться этот электрод, будет для упрощения расчёта однородным суглинком, обычным для России, с удельным электрическим сопротивлением 100 Ом*м.
Расчёт проводится в 1 этап.
Сопротивление заземления одиночного вертикального заземляющего электрода вычисляется по формуле:
R1 составит 4,7 Ом (при p = 100 Ом*м, L = 30 м, d = 0.014 м (14 мм), T = 15.5 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода)).
Этот результат хуже, чем у электрода, имеющего диаметр 100 мм, но замечу — уменьшение диаметра электрода в 7 раз (700%) вызвало увеличение сопротивления заземления всего на 27%.
Д1.3. Монтаж
Монтаж модульного заземления очень лёгкий и доступен даже девушке.
Штыри забиваются в грунт друг за другом отбойным молотком постепенно увеличивая глубину заземляющего электрода. Отбойный молоток размещается над штырём.
Задачи монтажника: ровно держать молоток над штырём (не “на весу”, т.е. молоток своим весом давит не на руки, а на монтируемый штырь) и наращивать электрод — устанавливать следующий штырь над уже заглубленным.
Если монтаж выполняется вне здания то, монтаж модульного заземления/ заземлителя производится в канаве небольшой длины и глубиной 0.5 метра в которую также укладывается заземляющий проводник (медный провод или традиционная стальная полоса), идущий до объекта (электрощита).
Если монтаж выполняется внутри здания (в подвале), то монтаж заземлителя производится на уровне пола. Далее медным проводом полученный заземлитель подключается к щиту.
И при использовании стальной полосы и при использовании медного провода для их соединения со штырём в основном используется болтовой зажим из латуни или нержавеющей стали.
Иногда можно встретить способ соединения с помощью экзотермической сварки (смесь горючего материала с медной пылью заливает место контакта проводника и штыря, сваривая их между собой). Но это экзотика.
Подробнее о монтаже резьбовых штырей можно познакомиться на YouTube (ссылка).
UPD: Отбойный молоток можно взять в аренду на сутки (от 500-700 рублей) или купить почти в любом магазине электроинструмента (от 9-10 т.руб.).
Д1.4. Достоинства и недостатки
- простота и лёгкость монтажа. Все операции производит без серьёзного физического труда один человек без особой подготовки.
- высокая эффективность заземлителя, обеспечивающая низкое сопротивление заземления
- суперкомпактность, позволяющая монтировать заземлитель на очень маленькой площадке или в подвалах
- большой срок службы заземляющего электрода (до 100 лет в суглинке)
- сезонная НЕзависимость качества заземления. Зимой из-за промерзания грунта сопротивление такого заземлителя почти не изменяется из-за нахождения в зоне промерзающего грунта не более 5-10% длины электрода.
- не нужна сварка. Элементы конструкции надежно сопрягаются без неё.
- невозможность монтажа электрода в каменистом грунте. Гвоздь не забить в камень.
Штырь за счёт высокой механической прочности конструкции может отодвинуть небольшой камень, встреченный на своём пути. Может, изогнувшись в сторону от контакта по касательной с большим камнем, продолжить заглубление не по вертикальной оси. Но попав в достаточно большой камень без возможности отклониться — он встанет. - сравнительно высокая цена омеднённых штырей (около 380 рублей за метр) и дополнительной комплектации к ним. Цена много ниже стоимости буровых работ, но она однозначно выше цен на чёрный металлопрокат, используемый при строительства традиционного многоэлектродного заземлителя.
Однако объективнее сравнивать не “голую” стоимость материалов, а стоимость всех затрат при строительстве заземлителя. Часто оказывается, что суммарные затраты сопоставимы или даже ниже именно у модульного заземления (например, за счёт банальной экономии на доставке материалов на объект).
Д2. Электролитическое заземление (для вечномёрзлых или каменистых грунтов)
Д2.1. Особенности решения
Д2.1.1. Простота применения в вечномёрзлых или каменистых грунтах
Д2.1.2. Компактность
Д2.1.3. Образование талика
Д2.1.4. Никакой сварки
Д2.2. Расчёт получаемого сопротивления заземления
Д2.3. Монтаж
Д2.4. Достоинства и недостатки
Напомню об отмеченном в п. Г1.5. методе иногда применяемом для существенного уменьшения сопротивления заземления .
Засоление грунта в месте размещения электродов путем добавления в него большого объема поваренной соли NaCl. При её растворении в грунте (выщелачивании (wiki)) резко повышается концентрация ионов, участвующих в переносе заряда, а следовательно снижается его (грунта) электрическое сопротивление.
- за счет вымывания соли из грунта (дожди, весеннее таяние снега), концентрация ионов падает до естественного уровня за 2-3 года
- соли вызывают сильную коррозию стали, разрушая электроды и заземляющий проводник за 3-5 лет. Эти недостатки грозят восстановлением заземлителя практически “с нуля”.
- постоянное поддержание концентрации ионов в грунте. Иными словами, их пополнение новыми порциями.
- использование в конструкции материалов, минимально подверженных воздействию соли, и менее агрессивных компонентов этих солей
Электрод такого типа представляет собой трубу небольшой длины (обычно 2-3 метра) из нержавеющей стали, имеющей почти по всей длине перфорацию. Внутри этой трубы находятся гранулы (не порошок) смеси солей.
Кроме привычного NaCl в смеси присутствуют еще 3 компонента. Состав якобы является секретом производителей, но мы то знаем, как это бывает 🙂
Промышленно выпускается два вида труб. В вертикальном исполнении и горизонтальном (в виде повёрнутой буквы “Г” — вот так “I___”.
Такой электрод помещается в грунт: вертикального исполнения — в заранее сделанную скважину необходимой глубины (2,5 — 3,5 метра); горизонтального исполнения — в заранее выкопанную канаву глубиной 0,7 метра длиной 2,5 метра.
Влага из грунта впитывается солями в электроде и выходит в виде раствора (электролита) в этот же грунт, пропитывая его и вызывая уменьшение его удельного электрического сопротивления.
Из-за чего, уменьшается сопротивление заземления электрода (трубы), размещенной в этом грунте.
Т.к. смесь солей находится в гранулах и в её составе присутствует специальная добавка, она не растворяется всем объемом в весеннее время, когда грунт пропитан водой. Таким образом достигается длительный и равномерный выход электролита из электрода, постепенно увеличивающий (а не просто сохраняющий) концентрацию ионов в окружающем грунте. Обычно заводской “заправки” электрода хватает на 15 лет, после чего возможна неоднократная “дозаправка”.
Применение в качестве материала трубы из нержавеющей стали и использование менее агрессивной, чем NaCl смеси солей, обеспечивают срок службы “оболочки” такого электрода не менее 50 лет.
Д2.1. Особенности решения
Д2.1.1. Простота применения в вечномёрзлых или каменистых грунтах
Конструкция электрода электролитического заземления позволяет использовать его в “проблемных” грунтах.
Вечномёрзлые грунты постоянно (круглогодично в течении сотен лет) находятся в замерзшем состоянии. Встречаются на Севере нашей страны. Глубина промерзания такого грунта достигает 2-х километров (в районе Якутска). Начинается вечная мерзлота с 1-2 метров от уровня земли, т.е. с той глубины, которую не может прогреть солнце в летний период.
Вечномёрзлый грунт очень сложен для строительства заземлителей: он имеет очень высокое электрическое сопротивление (в 100-300 раз больше суглинка) и обладает свойством “выталкивать” из себя металлические электроды из-за эффекта расширения воды при замерзании. Это происходит после летнего оттаивания грунта (перехода грунтовой влаги в жидкое состояние) под этими электродами.
Каменистый грунт, содержащий большое количество камней размером от кулака до метровых валунов, не менее сложен для строительства заземлителей тем, что в него трудно погрузить электроды обычным способом — мешают камни.
Для установки электрода такого типа в горизонтальном исполнении необходима только канава небольшой глубины (0,7 метра), которую сравнительно легко вырыть в обоих типах грунта. Размещение электрода в верхнем слое грунта над вечной мерзлотой избавляет от эффекта “выталкивания”.
Небольшое заглубление электрода делает возможным и ограниченное применение его в скальниках — если над каменным монолитом есть хотя бы метровый слой рассыпчатого (для “пропитывания” электролитом) грунта.
Д2.1.2. Компактность
Электрод электролитического заземления до 12 раз эффективнее обычного стального электрода такого же размера. Это значит в 12 раз уменьшается необходимое количество элементов заземлителя, а значит значительно уменьшается площадь, занимаемая ими.
При этом, очень ослабевает зависимость сопротивления заземления от сезона из-за уменьшения температуры замерзания воды при увеличении в ней концентрации солей до -5 градусов (температура обычного грунта под снежной шапкой). Это убирает необходимость использования дополнительных заземляющих электродов для компенсации роста сопротивления зимой.
Д2.1.3. Образование талика
У свойства электрода уменьшать температуру замерзания грунта есть и негативный момент. Около электрода образуется зона талика (wiki), могущая представлять опасность для фундамента рядом стоящего здания или дорожного покрытия. Зона талика на поверхности грунта представляет собой овал размером около 3х6 метров. Поэтому в ходе проектных работ необходимо учесть это и отдалить электроды от объектов, могущих быть повреждёнными.
Д2.1.4. Никакой сварки
Для присоединения к смонтированному электроду заземляющего проводника используется специальный болтовой зажим из латуни или нержавеющей стали.
Д2.2. Расчёт получаемого сопротивления заземления
Приведу пример расчёта сопротивления заземления электрода горизонтального исполнения, т.к. это наиболее распространённый на практике вариант, имеющего длину горизонтальной части 2,4 метра и её диаметр 65 мм. Грунт, как обычно, будет однородным суглинком с удельным электрическим сопротивлением 100 Ом*м.
Сопротивление заземления одиночного горизонтального заземляющего электрода вычисляется по формуле:
В случае электрода электролитического заземления к формуле добавляется коэффициент, описывающий концентрацию электролита в грунте около этого электрода:
Коэффициент варьируется от 0,5 до 0,05. Постепенно он уменьшается, т.к. электролит проникает в грунт на бОльший объем, при это повышая свою концентрацию. В обычном грунте он составляет 0,125 через 1-2 месяца выщелачивания солей. Процесс можно ускорить добавлением воды в электрод на заключительной стадии монтажа.
R1 составит 4,14 Ом (при С = 0,125, р = 100 Ом*м, L = 2.4 м, d = 0.065 м (65 мм), T = 0.6 м (Т — расстояние от верхнего уровня грунта до середины заглублённого электрода)).
Отличный результат для одиночного заземлителя размером всего в 2,4 метра!
Но, как всегда, расплата за результат в цене такого электрода… О чём ниже в п. Д2.4. (недостатки).
Д2.3. Монтаж
Монтаж электрода электролитического заземления горизонтального исполнения самый простой из всех встреченных мной способов. По сути это банальное закапывание электрода на небольшую глубину.
Роется канава глубиной 0,7 метра и длиной 2,5 метра. На дно опускается электрод. Используя болтовой зажим, подключается заземляющий проводник. Канава закапывается.
Дополнительно можно залить в горловину электрода литров 5 воды для ускорения процесса выщелачивания.
Д2.4. Достоинства и недостатки
- простота и лёгкость монтажа
- очень высокая эффективность заземлителя, обеспечивающая низкое сопротивление заземления
- компактность, позволяющая монтировать заземлитель на небольшой площадке.
Однако, с учётом негативной особенности, описанной в п. Д2.1.3. - большой срок службы заземляющего электрода (не менее 50 лет) при его “дозаправке” смесью солей.
Решение изначально создавалось с таким свойством. - очень слабая сезонная зависимость качества заземления
- не нужна сварка. Элементы конструкции надежно сопрягаются без неё.
- высокая цена электрода (40-60 тысяч рублей за электрод), которая ограничивает широкое использование.
Рекомендуется применение электролитического заземления в вечномёрзлых или каменистых грунтах, в которых обычные способы строительства не позволяют добиться необходимого результата или ещё дороже. - необходимость отдаления от фундаментов зданий и дорог
На этом всё. Спасибо за внимание! Извините за большой объём информации.
Вопросы можно задать в комментариях или напрямую по моим координатам, указанным в профиле. Я всегда рад помочь в меру своих возможностей и знаний всем интересующимся.
Не стесняйтесь 🙂 Помните: нет глупых вопросов — есть глупые ответы.
PS Мои знания в области защитных устройств и электросетей весьма скудны и поверхностны. Пожалуйста, имейте это в виду.
Алексей Рожанков, специалист технического центра «ZANDZ.ru»
- Публикации на сайте «Заземление и молниезащита на ZANDZ.ru»
- Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания (гуглить)
- Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87 (гуглить)
- Технический циркуляр 11/2006 ассоциации «Росэлектромонтаж» (гуглить)
- ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить) - Underground corrosion (United States. National Bureau of Standards. Circular 579)
Автор: Melvin Romanoff; Издатель: U.S. Govt. Print. Off., 1957) - Собственный опыт и знания
Источник https://www.7amper.by/articles/obzory-tovarov/zazemlenie-v-chastnom-dome-skhema-i-algoritm-deystviy-vidy-konturov/
Источник https://habr.com/ru/articles/145125/