Все виды дробей: Виды дробей

Содержание

Обыкновенные дроби. Конспект — Kid-mama

Из этой статьи вы узнаете:

  1. Что такое обыкновенные дроби.
  2. Виды обыкновенных дробей
  3. Преобразования дробей
  4. Сравнение дробей
  5. Основное свойство дроби. Сокращение дробей. Понятие о НОД.
  6. Как приводить дроби к одному знаменателю. НОК
  7. Сложение и вычитание дробей.
  8. Умножение и деление дробей. Взаимно обратные числа и дроби.

1 Что такое обыкновенные дроби. Виды дробей.
Дробь всегда означает какую то часть целого. Дело в том, что не всегда количество можно передать натуральными числами, то есть пересчитать: 1,2,3 и т.д.  Как, например, обозначить половину арбуза или четверть часа? Вот для этого и появились дробные числа, или дроби.

Для начала нужно сказать, что вообще дробей бывает два вида: обыкновенные дроби и десятичные дроби. Обыкновенные дроби записываются так:
Десятичные дроби записываются по другому:


Обыкновенные дроби состоят из двух частей: вверху — числитель, внизу — знаменатель.

 Числитель и знаменатель разделяет дробная черта. Итак, запомните:

Любая дробь — это часть целого. За целое обычно принимают  1 (единицу). Знаменатель дроби показывает, на сколько частей разделили целое (1), а числитель — сколько частей взяли. Если мы разрезали торт на 6 одинаковых частей ( в математике говорят долей ), то каждая часть торта будет равна 1/6. Если Вася съел 4 куска, то значит, он съел 4/6 .

С другой стороны, дробная черта — это не что иное, как знак деления. Поэтому дробь — это частное двух чисел — числителя и знаменателя. В тексте задач или в рецептах блюд  дроби записываются обычно так: 2/3,  1/2  и т.д. Некоторые дроби получили собственное название, например, 1/2 — «половина», 1/3 — «треть», 1/4 — «четверть»

А теперь разберемся, какие бывают виды обыкновенных дробей.

2 Виды обыкновенных дробей

Обыкновенные дроби бывают трех видов: правильные, неправильные и смешанные:

Правильная дробь

Если числитель меньше, чем знаменатель, то такую дробь называют правильной, например:  Правильная дробь всегда меньше 1.

Неправильная дробь

Если числитель больше, чем знаменатель или равен знаменателю, такая дробь называется

неправильной, например:

Неправильная дробь больше единицы(если числитель больше знаменателя) или равна единице (если числитель равен знаменателю)

Смешанная дробь

Если дробь состоит из целого числа (целая часть) и правильной дроби (дробная часть), то такая дробь называется смешанной, например:

Смешанная дробь всегда больше единицы.

3 Преобразования дробей

В математике обыкновенные дроби часто приходится преобразовывать, то есть смешанную дробь превращать в неправильную и наоборот. Это необходимо для выполнения некоторых действий, например, умножения и деления.

Итак, любую смешанную дробь можно перевести в неправильную. Для этого целую часть умножают на знаменатель и прибавляют числитель дробной части. Полученную сумму берут числителем, а знаменатель оставляют тот же, например:

Любую неправильную дробь можно превратить в смешанную. Для этого делят числитель на знаменатель (с остатком).Полученное число будет целой частью, а остаток — числителем дробной части, например:

При этом говорят: «Мы выделили целую часть из неправильной дроби».

Необходимо запомнить еще одно правило: Любое целое число можно представить в виде обыкновенной дроби со знаменателем 1, например:

Поговорим о том, как сравнивать дроби.

4 Сравнение дробей

При сравнении дробей может быть несколько вариантов: Легко сравнивать дроби с одинаковыми знаменателями, гораздо сложнее — если знаменатели разные. А есть еще и сравнение смешанных дробей. Но не волнуйтесь, сейчас мы подробно рассмотрим каждый вариант и научимся сравнивать дроби.

Из двух дробей с одинаковыми знаменателями, но разными числителями больше та дробь, у которой числитель больше, например:

Из двух дробей с одинаковыми числителями, но разными знаменателями больше та дробь, у которой знаменатель меньше, например:

Неправильная или смешанная дробь всегда больше правильной дроби, например:

При сравнении двух смешанных дробей больше та дробь, у которой целая часть больше, например:

Если целые части у смешанных дробей одинаковые, больше та дробь, у которой дробная часть больше, например:

Сравнивать дроби с разными числителями и знаменателями без их преобразования нельзя. Сначала дроби нужно привести к одному знаменателю, а затем  сравнить их числители. Больше та дробь, у которой числитель будет больше. А вот как приводить дроби к одинаковому знаменателю, мы рассмотрим в следующих двух разделах статьи статьи. Сначала мы рассмотрим основное свойство дроби и сокращение дробей, а затем непосредственно приведение дробей к одному знаменателю.

5 Основное свойство дроби. Сокращение дробей. Понятие о НОД.

Запомните: складывать и вычитать, а также сравнивать можно только дроби, у которых одинаковые знаменатели. Если знаменатели разные, то сначала нужно привести дроби к одному знаменателю, то есть так преобразовать одну из дробей, чтобы ее знаменатель стал таким же, как у второй дроби.

У дробей есть одно важное свойство, называемое также основным свойством дроби:

Если и числитель, и знаменатель дроби умножить или разделить на одно и то же число, то величина дроби при этом  не изменится:

Благодаря этому свойству мы можем сокращать дроби:

Сократить дробь — значит разделить и числитель, и знаменатель на одно и то же число(смотрите пример чуть выше). Когда мы сокращаем дробь, то можно расписать наши действия так:

Чаще же в тетради сокращают дробь так:

Но запомните: сокращать можно только множители. Если в числителе или знаменателе сумма или разность, сокращать слагаемые нельзя.

Пример:

Нужно сначала преобразовать сумму в множитель:

Иногда, при работе с большими числами,  для того, чтобы сократить дробь, удобно найти наибольший общий делитель числителя и знаменателя (НОД)

Наибольший общий делитель (НОД) нескольких чисел — это наибольшее натуральное число, на которое эти числа делятся без остатка.

Для того, чтобы найти НОД двух чисел (например, числителя и знаменателя дроби), нужно разложить оба числа на простые множители, отметить одинаковые множители в обоих разложениях, и перемножить эти множители. Полученное произведение и будет НОД. Например, нам нужно сократить дробь:

Найдем НОД чисел 96 и 36:

НОД нам показывает, что и в числителе, и в знаменателе есть множитель12, и мы легко сокращаем дробь.

Иногда, чтобы привести дроби к одному знаменателю, достаточно сократить одну из дробей. Но чаще бывает необходимо подбирать дополнительные множители для обеих дробей .Сейчас мы рассмотрим, как это делается. Итак:

6 Как приводить дроби к одному знаменателю. Наименьшее общее кратное (НОК).

Когда мы приводим дроби к одинаковому знаменателю, мы подбираем для знаменателя такое число, которое бы делилось и на первый, и на второй знаменатель (то есть было бы кратным обоим знаменателям, выражаясь математическим языком). И желательно, чтобы  число это было как можно меньшим, так удобнее считать. Таким образом, мы должны найти НОК обоих знаменателей.

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

Однако вернемся к нашим дробям. После того, как мы подобрали или письменно вычислили НОК  обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители. Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

 

Таким образом мы привели наши дроби к одному знаменателю — 15.

7 Сложение и вычитание дробей

Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Сложение и вычитание смешанных дробей с одинаковыми знаменателями

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью:

Пример 1:

Пример 2:

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

Вычитание проводится аналогично: целая часть вычитается из целой, а дробная — из дробной части:

Если дробная часть вычитаемого больше, чем дробная часть уменьшаемого, «занимаем» единицу из целой части, превращая уменьшаемое в неправильную дробь, а дальше действуем как обычно:

Аналогично вычитаем из целого числа дробь:

Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

Если мы складываем целое число и смешанную дробь, мы прибавляем это число к целой части дроби, например:

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как при сложении дробей с одинаковыми знаменателями (сложить числители):

При вычитании действуем аналогично:

Если работаем со смешанными дробями, приводим к одинаковому знаменателю их дробные части и далее вычитаем как обычно: целую часть из целой, а дробную — из дробной части:

8 Умножение и деление дробей.

Умножать и делить обыкновенные дроби гораздо проще, чем складывать и вычитать, так как не нужно приводить их к одному знаменателю. Запомните простые правила умножения и деления дробей:

Чтобы умножить дробь на натуральное число, нужно числитель умножить на это число, а знаменатель оставить без изменений  

Например:

Чтобы умножить дробь на дробь, нужно числитель умножить на числитель, а знаменатель — на знаменатель:

Например:

При умножении смешанных дробей нужно сначала записать эти дроби в виде неправильных дробей, а затем умножать как обычно: числитель умножить на числитель, а знаменатель на знаменатель:

Перед тем, как перемножать числа в числителе и знаменателе желательно сократить дробь, то есть избавиться от одинаковых множителей в числителе и знаменателе, как в нашем примере.

Чтобы  разделить дробь на натуральное число, нужно знаменатель умножить на это число, а числитель оставить без изменений:

Например:

Деление дроби на дробь

Чтобы разделить одну дробь на другую, нужно делимое умножить на число, обратное делителю (обратную дробь). Что же это за обратная дробь?

Взаимно обратные числа и дроби.

Если мы перевернем дробь, то есть поменяем местами числитель и знаменатель, то получим обратную дробь. Произведение дроби и обратной ей дроби дает единицу. В математике такие числа называют взаимно обратными числами:

Например, числа — взаимно обратные, так как 

Таким образом, вернемся к делению дроби на дробь:

Чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю:

Например:

При делении смешанных дробей нужно так же, как и при умножении, сначала перевести их в неправильные дроби:

При умножении и делении дробей на целые натуральные числа, можно представлять эти числа так же в виде дробей со знаменателем 1.

И при делении целого числа на дробь  представляем это число в виде дроби со знаменателем 1:

 

Виды дробей

В математике дробь вводиться для отображения части целого числа.  Например, одна вторая или половина, одна четвертая или четверть, две пятых и т.д. Все дроби можно разделить на три вида:

1.Простые или обычные дроби
Дробь, принято записывать в форме двух целых чисел, которые отделяются горизонтальной  или скошенной (1/2, 1/4, 2/5) прямой называется простым. Число, стоящее внизу или справа (в зависимости от формы записи) в простом дроби, называется знаменателем, и он показываю на сколько равных частиц нужно разделить целое, а число вверху или слева — числителем, и он показываю сколько этих равных частиц целого нужно взять . Что это означает на практике, рассмотрим на примере дроби . Для этого возьмем пиццу и выделим на ней эту дробь. Знаменатель, то есть число 8, будет показывать на сколько кусков нужно разрезать пиццу, а числитель, то есть число 5, будет показывать сколько кусков из этих восьми собственно надо взять.

1. Количество частиц, на которые делится пицца 8.

2. Количество кусков, которые мы берем 5.

Основное свойство простой дроби.

Если числитель и знаменатель какой — либо дроби умножить или разделить на одно и тоже число, то значение дроби не изменится:  

   

То есть, таким образом можно получить бесконечное количество записей одного и того же дроби.

Вопрос в том, как это свойство дроби используется на практике. Например, мы имеем дробь

   

разделим числитель и знаменатель этой дроби на пять и получим дробь

   

а если знаменатель и числитель снова разделить на 5, то вообще получим дробь:

   

Понятно, что работать с последней дробью гораздо удобнее и легче, чем с начальной, хотя величины обеих дробей одинаковы. Процедура деления числителя и знаменателя на одно и тоже число, описанная в примере выше, называется сокращением дроби и для простоты вычислений ее, по возможности, нужно проводить всегда.
Так же можно сокращать дробь на выражения: 

   

 

   

И в старших классах, кроме двух чисел, нужно уметь сокращать именно выражения. Однако многие старшеклассники, взяв на вооружение процедуру сокращения, начинают применять ее там, где это недопустимо. Например, дробь вида

   

нельзя сократить, поскольку не делится ни на одно число, кроме всего выражения в целом на себя . Но старшеклассника это может не остановить, и в знаменателе и числителе будет сокращен, таким образом дробь превратится в

   

что для учителя будет равноценно неумению работать с дробями вообще.

Правильная и неправильная простые дроби.

Дробь, в котором числитель имеет значение меньше знаменатель, называется правильным. Например,  (5 меньше 6),  (17 меньше 105), (59 менее 105) и т.д. Если же числитель превышает значение знаменателя, то такая дробь называется неправильной. Например, (9 больше 4),  (22 более 15) и т.д. Возвращаясь к пицце, неправильный дробь  означает, что наша пицца была разделена на 4 куска и таких кусков было взято 9, то есть больше, чем составляет одна пицца, а если точнее, то 9 таких кусков составлять 2 целых пиццы и еще одну четвертинку . Это означает, что в неправильном дроби можно выделить целую часть (целые пиццы).

3.Дробь .

2.Смешанные числа.
Дробь, записывается как целое число и рядом  простая правильная дробь (, ) называется смешанным и его можно получить, выделив количество целых частей в неправильной простой дроби. Данный вид записи дробей редко используется, но такая запись может встретиться в задачи, поэтому в дальнейшем покажем как переходить от смешанной дроби к простой неправильной дроби. Для этого возьмем смешанную дробь  и нашу пиццу. Видим, что знаменатель дроби равен 5, а это значит, что каждую из 4 целых пицц нужно разрезать на пять кусков, в результате мы получим 20 кусков. После этого нужно к этих 20 кускам добавить еще те два куска, стоявших в числителе простой дроби — получим 22 куска, то есть неправильную простую дробь . В математическом записи это будет иметь вид
3.Десятичные дроби.
Дроби записаны в виде 0,235; 0,32; 5,6 и т.д. называются десятичными. Причем говорят, что до запятой указана целая часть, а после запятой дробная. Важно уметь читать такую ​​форму записи, для того, чтобы легко переходить от десятичной формы записи к простой дроби. Итак, сначала проговаривается число перед запятой и добавляется слово «целых», а затем проговаривается число после запятой и в зависимости от количества знаков /цифр после запятой добавляется слово, которое показывает на сколько частей разбивается целое: десятых, сотых, тысячных, десятитысячных и т .д .. Например, запись вида 0,2 читается как «ноль целых две десятых», запись 4,32 — «четыре целых тридцать две сотых» и т.д.

Преобразование десятичной дроби в простую и наоборот.

Для того, чтобы перейти от десятичной к простой дроби нужно записать десятичную дробь так как она читается, но з помощью числителя и знаменателя, а затем, по возможности, провести процедуру сокращения. Например, и после сокращения на 2 получим
и после сокращения на 25 получим Число после перевода в простую дробь сократить нельзя, так что это окончательная форма записи.

Часто приходится переводить простую дробь в десятичную, в частности для записи ответов в тестах. Что делать, если, решив задачу, получили результат в виде простой дроби

   

нужно, как учили в начальной школе, разделить в столбик одно число на другое.

Как видно из результатов деления, получим

   

Если попытаться, например, дробь перевести в десятичную, то есть выполнить процедуру деления в столбик, то получим число и так тройки до бесконечности. Поэтому можно сделать вывод, что любая десятичная дробь переводится в обычную (простую) дробь.

Какой же формой записи дроби пользоваться лучше? Конечно же, это зависит от ситуации. Например, если у вас есть задача, где дроби находятся во всех трех видах, в таком случае надежнее перевести все эти дроби в обычные и затем проводить вычисления. Если же в задании предлагается посчитать десятичные дроби, то конечно же переходить к простым дробям не требуется. То есть мы выбираем тот способ решения, что является наиболее удобным.

Какие дроби правильные а какие нет. Дробь

Изучая царицу всех наук — математику, в определенный момент все сталкиваются с дробями. Хотя это понятие (как и сами виды дробей или математические действия с ними) совсем несложное, к нему нужно относиться внимательно, ведь в реальной жизни за пределами школы оно очень пригодится. Итак, давайте освежим свои знания о дробях: что это, для чего нужно, какие виды их бывают и как совершать с ними различные арифметические действия.

Ее величество дробь: это что такое

Дробями в математике называются числа, каждое из которых состоит из одной или более частей единицы. Такие дроби еще называют обыкновенными, либо простыми. Как правило, они записываются​ в виде двух чисел, которые разделены горизонтальной или слеш-чертой, она называется «дробной». Например: ½, ¾.

Верхнее, или первое из этих чисел — это числитель (показывает, сколько взято долей от числа), а нижнее, или второе — знаменатель (демонстрирует, на столько частей разделена единица).

Дробная черта фактически выполняет функции знака деления. К примеру, 7:9=7/9

Традиционно обыкновенные дроби меньше единицы. В то время как десятичные могут быть больше ее.

Для чего нужны дроби? Да для всего, ведь в реальном мире далеко не все числа целые. К примеру, две школьницы в столовой купили в складчину одну вкусную шоколадку. Когда они уже собрались делить десерт, встретили подружку и решили угостить и и ее. Однако теперь необходимо правильно разделить шоколадку, если учесть, что она состоит из 12 квадратиков.

Поначалу девчонки хотели разделить все поровну, и тогда каждой бы досталось по четыре кусочка. Но, раздумав, они решили угостить подружку, не 1/3, а 1/4 шоколадки. А поскольку школьницы плохо изучали дроби, то они не учли, что при подобном раскладе в результате у них останется 9 кусочков, которые очень плохо делятся на двоих. Этот довольно простой пример показывает, насколько важно уметь правильно находить часть от числа. А ведь в жизни подобных случаев гораздо больше.

Виды дробей: обыкновенные и десятичные

Все математические дроби делятся на два больших разряда: обыкновенные и десятичные. Об особенностях первого из них было рассказано в предыдущем пункте, так что теперь стоит уделить внимание второму.

Десятичной называют позиционную запись дроби числа, которая фиксируется на письме через запятую, без черточки или слеша. Например: 0,75, 0,5.

Фактически десятичная дробь идентична обыкновенной, однако, в ее знаменателе всегда единица с последующими нулями — отсюда произошло и ее название.

Число, предшествующее запятой, — это целая часть, а все находящееся после — дробная. Любую простую дробь можно перевести в десятичную. Так, указанные в предыдущем примере десятичные дроби можно записать как обычные: ¾ и ½.

Стоит отметить, что и десятичные, и обыкновенные дроби могут быть как положительными, так и отрицательными. Если перед ними стоит знак «-«, данная дробь отрицательная, если «+» — то положительная.

Подвиды обыкновенных дробей

Есть такие виды дробей простых.

Подвиды десятичной дроби

В отличие от простой, десятичная дробь делится всего на 2 вида.

  • Конечная — получила такое название из-за того, что после запятой у нее ограниченное (конечное) число цифр: 19,25.
  • Бесконечная дробь — это число с нескончаемым количеством цифр после запятой. К примеру, при делении 10 на 3 результатом будет бесконечная дробь 3,333…

Сложение дробей

Проводить различные арифметические манипуляции с дробями немного сложнее, чем с обычными числами. Однако, если усвоить основные правила, решить любой пример с ними не составит особого труда.

Например: 2/3+3/4. Наименьшим общим кратным для них будет 12, следовательно, необходимо, чтобы в каждом знаменателе стояло это число. Для этого числитель и знаменатель первой дроби умножаем на 4, получается 8/12, аналогично поступаем со вторым слагаемым, но только множим на 3 — 9/12. Теперь можно легко решить пример: 8/12+9/12= 17/12. Получившаяся дробь — это неправильная величина, поскольку числитель больше знаменателя. Ее можно и нужно пребразовать в правильную смешанную, разделив 17:12= 1 и 5/12.

В случае, если слагаются смешанные дроби, сначала действия совершаются с целыми числами, а потом с дробными.

Если в примере присутствует десятичная дробь и обычная, необходимо, чтобы обе стали простыми, потом привести их к одному знаменателю и сложить. К примеру 3,1+1/2. Число 3,1 можно записать как смешанную дробь 3 и 1/10 или как неправильную — 31/10. Общим знаменателем для слагаемых будет 10, поэтому нужно умножить поочередно числитель и знаменатель 1/2 на 5, получается 5/10. Далее можно легко все высчитать: 31/10+5/10=35/10. Полученный результат — неправильная сократимая дробь, приводим ее в нормальный вид, сократив на 5: 7/2=3 и 1/2, или десятичной — 3,5.

Если слагать 2 десятичные дроби, важно, чтобы после запятой было одинаковое количество цифр. Если это не так, нужно просто дописать необходимое количество нулей, ведь в десятичной дроби это можно сделать безболезненно. Например, 3,5+3,005. Чтобы решить это задание, нужно к первому числу прибавить 2 ноля и далее поочередно слагать: 3,500+3,005=3,505.

Вычитание дробей

Вычитая дроби, стоит поступать так же, как и при сложении: свести к общему знаменателю, отнять один числитель от другого, при необходимости перевести результат в смешанную дробь.

Например: 16/20-5/10. Общим знаменателем будет 20. Нужно привести вторую дробь к этому знаменателю, умножив обе ее части на 2, получается 10/20. Теперь можно решать пример: 16/20-10/20= 6/20. Однако этот результат относится к сократимым дробям, поэтому стоит поделить обе части на 2 и получается результат — 3/10.

Умножение дробей

Деление и умножение дробей — значительно более простые действия, нежели сложение и вычитание. Дело в том, что, выполняя эти задания, нет необходимости искать общий знаменатель.

Чтобы умножить дроби, нужно просто поочередно перемножить между собою оба числителя, а затем и оба знаменателя. Получившийся результат сократить, если дробь — это сократимая величина.

Например: 4/9х5/8. После поочередного умножения получается такой результат 4х5/9х8=20/72. Такая дробь сократима на 4, поэтому конечный ответ в примере — 5/18.

Как делить дроби

Деление дробей — тоже несложное действие, фактически оно все равно сводится к их умножению. Чтобы разделить одну дробь на другую, нужно вторую перевернуть и умножить на первую.

Например, деление дробей 5/19 и 5/7. Чтобы решить пример, нужно поменять местами знаменатель и числитель второй дроби и умножить: 5/19х7/5=35/95. Результат можно сократить на 5 — получается 7/19.

В случае, если необходимо разделить дробь на простое число, методика немного отличается. Изначально стоит записать это число как неправильную дробь, а потом делить по той же схеме. Например, 2/13:5 нужно записать как 2/13: 5/1. Теперь нужно перевернуть 5/1 и умножить получившиеся дроби: 2/13х1/5= 2/65.

Иногда приходится совершать деление дробей смешанных. С ними нужно поступать, как и с целыми числами: превратить в неправильные дроби, перевернуть делитель и умножить все. Например, 8 ½: 3. Превращаем все в неправильные дроби: 17/2: 3/1. Далее следует переворот 3/1 и умножение: 17/2х1/3= 17/6. Теперь следует перевести неправильную дробь в правильную — 2 целых и 5/6.

Итак, разобравшись с тем, что такое дроби и как можно с ними совершать различные арифметические действия, нужно постараться не забывать об этом. Ведь люди всегда более склонны делить что-то на части, нежели прибавлять, поэтому нужно уметь делать это правильно.

Правильная дробь

Четверти

  1. Упорядоченность . a и b существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений : « » или « = ». Это правило называется правилом упорядочения и формулируется следующим образом: два неотрицательных числа и связаны тем же отношением, что и два целых числа и ; два неположительных числа a и b связаны тем же отношением, что и два неотрицательных числа и ; если же вдруг a неотрицательно, а b — отрицательно, то a > b . src=»/pictures/wiki/files/57/94586b8b651318d46a00db5413cf6c15.png» border=»0″>

    Суммирование дробей

  2. Операция сложения . Для любых рациональных чисел a и b существует так называемое правило суммирования c . При этом само число c называется суммой чисел a и b и обозначается , а процесс отыскания такого числа называется суммированием . Правило суммирования имеет следующий вид: .
  3. Операция умножения . Для любых рациональных чисел a и b существует так называемое правило умножения , которое ставит им в соответствие некоторое рациональное число c . При этом само число c называется произведением чисел a и b и обозначается , а процесс отыскания такого числа также называется умножением . Правило умножения имеет следующий вид: .
  4. Транзитивность отношения порядка. Для любой тройки рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c . 6435″>Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  5. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  6. Наличие нуля . Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  7. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  8. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  9. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  10. Наличие единицы . Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  11. Наличие обратных чисел . Любое рациональное число имеет обратное рациональное число, при умножении на которое даёт 1.
  12. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
  13. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число. /pictures/wiki/files/51/358b88fcdff63378040f8d9ab9ba5048.png» border=»0″>
  14. Аксиома Архимеда . Каково бы ни было рациональное число a , можно взять столько единиц, что их сумма превзойдёт a . src=»/pictures/wiki/files/55/70c78823302483b6901ad39f68949086.png» border=»0″>

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Src=»/pictures/wiki/files/48/0caf9ffdbc8d6264bc14397db34e8d72.png» border=»0″>

Счётность множества

Нумерация рациональных чисел

Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно . Для этого достаточно привести алгоритм, который нумерует рациональные числа, т. е. устанавливает биекцию между множествами рациональных и натуральных чисел.

Самый простой из таких алгоритмов выглядит следующим образом. Составляется бесконечная таблица обыкновенных дробей, на каждой i -ой строке в каждом j -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где i — номер строки таблицы, в которой располагается ячейка, а j — номер столбца.

Полученная таблица обходится «змейкой» по следующему формальному алгоритму.

Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.

В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. Т. е. дроби 1 / 1 ставится в соответствие число 1, дроби 2 / 1 — число 2, и т. д. Нужно отметить, что нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.

Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, просто поставив в соответствие каждому рациональному числу противоположное ему. Т. о. множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.

Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, т. к. на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел. На самом деле это не так и натуральных чисел хватает, чтобы занумеровать все рациональные.

Недостаточность рациональных чисел

Гипотенуза такого треугольника не выражается никаким рациональным числом

Рациональными числами вида 1 / n при больших n можно измерять сколь угодно малые величины . Этот факт создаёт обманчивое впечатление, что рациональными числами можно измерить вообще любые геометрические расстояния . Легко показать, что это не верно.

Из теоремы Пифагора известно, что гипотенуза прямоугольного треугольника выражается как квадратный корень суммы квадратов его катетов . Т. о. длина гипотенузы равнобедренного прямоугольного треугольника с единичным катетом равна , т. е. числу, квадрат которого равен 2.

Если допустить, что число представляется некоторым рациональным числом, то найдётся такое целое число m и такое натуральное число n , что , причём дробь несократима, т. е. числа m и n — взаимно простые.

Если , то , т. е. m 2 = 2n 2 . Следовательно, число m 2 чётно, но произведение двух нечётных чисел нечётно, что означает, что само число m также чётно. А значит найдётся натуральное число k , такое что число m можно представить в виде m = 2k . Квадрат числа m в этом смысле m 2 = 4k 2 , но с другой стороны m 2 = 2n 2 , значит 4k 2 = 2n 2 , или n 2 = 2k 2 . Как уже показано ранее для числа m , это значит, что число n — чётно, как и m . Но тогда они не являются взаимно простыми, так как оба делятся пополам. Полученное противоречие доказывает, что не есть рациональное число.

При слове «дроби» у многих бегут мурашки. Потому что вспоминается школа и задания, которые решались на математике. Это являлось обязанностью, которую необходимо было выполнить. А что если относиться к заданиям, содержащим правильные и неправильные дроби, как к головоломке? Ведь многие взрослые решают цифровые и японские кроссворды. Разобрались в правилах, и все. Так же и здесь. Стоит только вникнуть в теорию — и все встанет на свои места. А примеры превратятся в способ потренировать мозг.

Какие виды дробей существуют?

Для начала о том, что это такое. Дробь — число, которое имеет некоторую часть от единицы. Ее можно записать в двух видах. Первый носит название обыкновенной. То есть такая, у которой есть горизонтальная или наклонная черта. Она приравнивается к знаку деления.

В такой записи число, стоящее над черточкой, называется числителем, а под ней — знаменателем.

Среди обыкновенных выделяют правильные и неправильные дроби. У первых числитель по модулю всегда меньше знаменателя. Неправильные потому так и называются, что у них все наоборот. Значение правильной дроби всегда меньше единицы. В то время как неправильная всегда больше этого числа.

Есть еще смешанные числа, то есть такие у которых имеются целая и дробная части.

Второй вид записи — десятичная дробь. О ней отдельный разговор.

Чем отличаются неправильные дроби от смешанных чисел?

По своей сути, ничем. Это просто разная запись одного и того же числа. Неправильные дроби после несложных действий легко становятся смешанными числами. И наоборот.

Все зависит от конкретной ситуации. Иногда в заданиях удобнее использовать неправильную дробь. А порой необходимо перевести ее в смешанное число и тогда пример решится очень легко. Поэтому, что использовать: неправильные дроби, смешанные числа, — зависит от наблюдательности решающего задачу.

Смешанное число еще сравнивают с суммой целой части и дробной. Причем вторая всегда меньше единицы.

Как представить смешанное число в виде неправильной дроби?

Если требуется выполнить какое-либо действие с несколькими числами, которые записаны в разных видах, то нужно сделать их одинаковыми. Один из методов — представить числа в виде неправильных дробей.

Для этой цели потребуется выполнить действия по такому алгоритму:

  • умножить знаменатель на целую часть;
  • прибавить к результату значение числителя;
  • записать ответ над чертой;
  • знаменатель оставить тем же.

Вот примеры того, как записать неправильные дроби из смешанных чисел:

  • 17 ¼ = (17 х 4 + 1) : 4 = 69/4;
  • 39 ½ = (39 х 2 + 1) : 2 = 79/2.

Как записать неправильную дробь в виде смешанного числа?

Следующий прием противоположен рассмотренному выше. То есть когда все смешанные числа заменяются на неправильные дроби. Алгоритм действий будет таким:

  • разделить числитель на знаменатель до получения остатка;
  • записать частное на месте целой части смешанного;
  • остаток следует разместить над чертой;
  • делитель будет знаменателем.

Примеры такого преобразования:

76/14; 76:14 = 5 с остатком 6; ответом будет 5 целых и 6/14; дробную часть в этом примере нужно сократить на 2, получится 3/7; итоговый ответ — 5 целых 3/7.

108/54; после деления получается частное 2 без остатка; это значит, что не все неправильные дроби удается представить в виде смешанного числа; ответом будет целое — 2.

Как целое число превратить в неправильную дробь?

Бывают ситуации, когда необходимо и такое действие. Чтобы получить неправильные дроби с заранее известным знаменателем, потребуется выполнить такой алгоритм:

  • умножить целое число на нужный знаменатель;
  • записать это значение над чертой;
  • разместить под ней знаменатель.

Самый простой вариант, когда знаменатель равен единице. Тогда ничего умножать не нужно. Достаточно просто написать целое число, которое дано в примере, а под чертой расположить единицу.

Пример : 5 сделать неправильной дробью со знаменателем 3. После умножения 5 на 3 получается 15. Это число будет знаменателем. Ответ задания дробь: 15/3.

Два подхода к решению заданий с разными числами

В примере требуется вычислить сумму и разность, а также произведение и частное двух чисел: 2 целых 3/5 и 14/11.

В первом подходе смешанное число будет представлено в виде неправильной дроби.

После выполнения действий, описанных выше, получится такое значение: 13/5.

Для того чтобы узнать сумму, нужно привести дроби к одинаковому знаменателю. 13/5 после умножения на 11 станет 143/55. А 14/11 после умножения на 5 примет вид: 70/55. Для вычисления суммы нужно только сложить числители: 143 и 70, а потом записать ответ с одним знаменателем. 213/55 — эта неправильная дробь ответ задачи.

При нахождении разности эти же числа вычитаются: 143 — 70 = 73. Ответом будет дробь: 73/55.

При умножении 13/5 и 14/11 не нужно приводить к общему знаменателю. Достаточно перемножить попарно числители и знаменатели. Получится ответ: 182/55.

Так же и при делении. Для правильного решения нужно заменить деление на умножение и перевернуть делитель: 13/5: 14/11 = 13/5 х 11/14 = 143/70.

Во втором подходе неправильная дробь обращается в смешанное число.

После выполнения действий алгоритма 14/11 обратится в смешанное число с целой частью 1 и дробной 3/11.

Во время вычисления суммы нужно сложить целые и дробные части по отдельности. 2 + 1 = 3, 3/5 + 3/11 = 33/55 + 15/55 = 48/55. Итоговый ответ получается 3 целых 48/55. В первом подходе была дробь 213/55. Проверить правильность можно, переведя его в смешанное число. После деления 213 на 55 получается частное 3 и остаток 48. Нетрудно заметить, что ответ правильный.

При вычитании знак «+» заменяется на «-». 2 — 1 = 1, 33/55 — 15/55 = 18/55. Для проверки ответ из предыдущего подхода нужно перевести в смешанное число: 73 делится на 55 и получается частное 1 и остаток 18.

Для нахождения произведения и частного пользоваться смешанными числами неудобно. Здесь всегда рекомендуется переходить к неправильным дробям.

Обыкновенные дроби делятся на \textit{правильные} и \textit{неправильные} дроби. Такое разделение основано на сравнении числителя и знаменателя.

Правильные дроби

Правильной дробью называется обыкновенная дробь $\frac{m}{n}$, у которой числитель меньше знаменателя, т.е. $m

Пример 1

Например, дроби $\frac{1}{3}$, $\frac{9}{123}$, $\frac{77}{78}$, $\frac{378567}{456298}$ являются правильными, так как в каждой из них числитель меньше знаменателя, что отвечает определению правильной дроби.

Существует определение правильной дроби, которое базируется на сравнении дроби с единицей.

правильной , если она меньше единицы:

Пример 2

Например, обыкновенная дробь $\frac{6}{13}$ является правильной, т.к. выполняется условие $\frac{6}{13}

Неправильные дроби

Неправильной дробью называется обыкновенная дробь $\frac{m}{n}$, у которой числитель больше или равен знаменателю, т.е. $m\ge n$.

Пример 3

Например, дроби $\frac{5}{5}$, $\frac{24}{3}$, $\frac{567}{113}$, $\frac{100001}{100000}$ являются неправильными, так как в каждой из них числитель больше или равен знаменателю, что соответствует определению неправильной дроби.

Дадим определение неправильной дроби, которое базируется на ее сравнении с единицей.

Обыкновенная дробь $\frac{m}{n}$ является неправильной , если она равна или больше единицы:

\[\frac{m}{n}\ge 1\]

Пример 4

Например, обыкновенная дробь $\frac{21}{4}$ является неправильной, т.к. выполняется условие $\frac{21}{4} >1$;

обыкновенная дробь $\frac{8}{8}$ является неправильной, т.к. выполняется условие $\frac{8}{8}=1$.

Рассмотрим более подробно понятие неправильной дроби.

Возьмем для примера неправильную дробь $\frac{7}{7}$. Значение этой дроби — взяли семь долей предмета, который поделен на семь одинаковых долей. Таким образом, из семи долей, которые есть в наличии, можно составить весь предмет. Т.е. неправильная дробь $\frac{7}{7}$ описывает целый предмет и $\frac{7}{7}=1$. Итак, неправильные дроби, у которых числитель равен знаменателю, описывают один целый предмет и такая дробь может быть заменена на натуральное число $1$.

    $\frac{5}{2}$ — достаточно очевидно, что из этих пяти вторых долей можно составить $2$ целых предмета (один целый предмет будут составлять $2$ доли, а для составления двух целых предметов нужны $2+2=4$ доли) и остается одна вторая доля. Т.е., неправильная дробь $\frac{5}{2}$ описывает $2$ предмета и $\frac{1}{2}$ долю этого предмета.

    $\frac{21}{7}$ — из двадцати одной седьмых долей можно составить $3$ целых предмета ($3$ предмета по $7$ долей в каждом). Т.е. дробь $\frac{21}{7}$ описывает $3$ целых предмета.

Из рассмотренных примеров можно сделать следующий вывод: неправильную дробь можно заменить натуральным числом, если числитель нацело делится на знаменатель (например, $\frac{7}{7}=1$ и $\frac{21}{7}=3$), или суммой натурального числа и правильной дроби, если числитель нацело не делится на знаменатель (например,$\ \frac{5}{2}=2+\frac{1}{2}$). Поэтому такие дроби и называются неправильными .

Определение 1

Процесс представления неправильной дроби в виде суммы натурального числа и правильной дроби (например, $\frac{5}{2}=2+\frac{1}{2}$) называется выделением целой части из неправильной дроби .

При работе с неправильными дробями прослеживается тесная связь между ними и смешанными числами.

Неправильная дробь часто записывается в виде смешанного числа — числа, которое состоит из целой и дробной части.

Чтобы записать неправильную дробь в виде смешанного числа, необходимо разделить числитель на знаменатель с остатком. Частное будет составлять целую часть смешанного числа, остаток — числитель дробной части, а делитель — знаменатель дробной части.

Пример 5

Записать неправильную дробь $\frac{37}{12}$ в виде смешанного числа.

Решение.

Разделим числитель на знаменатель с остатком:

\[\frac{37}{12}=37:12=3\ (остаток\ 1)\] \[\frac{37}{12}=3\frac{1}{12}\]

Ответ. $\frac{37}{12}=3\frac{1}{12}$.

Чтобы записать смешанное число в виде неправильной дроби, необходимо знаменатель умножить на целую часть числа, к произведению, которое получилось, прибавить числитель дробной части и записать полученную сумму в числитель дроби. Знаменатель неправильной дроби будет равен знаменателю дробной части смешанного числа.

Пример 6

Записать смешанное число $5\frac{3}{7}$ в виде неправильной дроби.

Решение.

Ответ. $5\frac{3}{7}=\frac{38}{7}$.

Сложение смешанного числа и правильной дроби

Сложение смешанного числа $a\frac{b}{c}$ и правильной дроби $\frac{d}{e}$ выполняет прибавлением к данной дроби дробной части данного смешанного числа:

Пример 7

Выполнить сложение правильной дроби $\frac{4}{15}$ и смешанного числа $3\frac{2}{5}$.

Решение.

Воспользуемся формулой сложения смешанного числа и правильной дроби:

\[\frac{4}{15}+3\frac{2}{5}=3+\left(\frac{2}{5}+\frac{4}{15}\right)=3+\left(\frac{2\cdot 3}{5\cdot 3}+\frac{4}{15}\right)=3+\frac{6+4}{15}=3+\frac{10}{15}\]

По признаку деления на число \textit{5 }можно определить, что дробь $\frac{10}{15}$ — сократима. Выполним сокращение и найдем результат сложения:

Итак, результатом сложения правильной дроби $\frac{4}{15}$ и смешанного числа $3\frac{2}{5}$ будет $3\frac{2}{3}$.

Ответ: $3\frac{2}{3}$

Сложение смешанного числа и неправильной дроби

Сложение неправильной дроби и смешанного числа сводят к сложению двух смешанных чисел, для чего достаточно выделить целую часть из неправильной дроби.

Пример 8

Вычислить сумму смешанного числа $6\frac{2}{15}$ и неправильной дроби $\frac{13}{5}$.

Решение.

Сначала выделим целую часть из неправильной дроби $\frac{13}{5}$:

Ответ: $8\frac{11}{15}$.

При слове «дроби» у многих бегут мурашки. Потому что вспоминается школа и задания, которые решались на математике. Это являлось обязанностью, которую необходимо было выполнить. А что если относиться к заданиям, содержащим правильные и неправильные дроби, как к головоломке? Ведь многие взрослые решают цифровые и японские кроссворды. Разобрались в правилах, и все. Так же и здесь. Стоит только вникнуть в теорию — и все встанет на свои места. А примеры превратятся в способ потренировать мозг.

Какие виды дробей существуют?

Для начала о том, что это такое. Дробь — число, которое имеет некоторую часть от единицы. Ее можно записать в двух видах. Первый носит название обыкновенной. То есть такая, у которой есть горизонтальная или наклонная черта. Она приравнивается к знаку деления.

В такой записи число, стоящее над черточкой, называется числителем, а под ней — знаменателем.

Среди обыкновенных выделяют правильные и неправильные дроби. У первых числитель по модулю всегда меньше знаменателя. Неправильные потому так и называются, что у них все наоборот. Значение правильной дроби всегда меньше единицы. В то время как неправильная всегда больше этого числа.

Есть еще смешанные числа, то есть такие у которых имеются целая и дробная части.

Второй вид записи — десятичная дробь. О ней отдельный разговор.

Чем отличаются неправильные дроби от смешанных чисел?

По своей сути, ничем. Это просто разная запись одного и того же числа. Неправильные дроби после несложных действий легко становятся смешанными числами. И наоборот.

Все зависит от конкретной ситуации. Иногда в заданиях удобнее использовать неправильную дробь. А порой необходимо перевести ее в смешанное число и тогда пример решится очень легко. Поэтому, что использовать: неправильные дроби, смешанные числа, — зависит от наблюдательности решающего задачу.

Смешанное число еще сравнивают с суммой целой части и дробной. Причем вторая всегда меньше единицы.

Как представить смешанное число в виде неправильной дроби?

Если требуется выполнить какое-либо действие с несколькими числами, которые записаны в разных видах, то нужно сделать их одинаковыми. Один из методов — представить числа в виде неправильных дробей.

Для этой цели потребуется выполнить действия по такому алгоритму:

  • умножить знаменатель на целую часть;
  • прибавить к результату значение числителя;
  • записать ответ над чертой;
  • знаменатель оставить тем же.

Вот примеры того, как записать неправильные дроби из смешанных чисел:

  • 17 ¼ = (17 х 4 + 1) : 4 = 69/4;
  • 39 ½ = (39 х 2 + 1) : 2 = 79/2.

Как записать неправильную дробь в виде смешанного числа?

Следующий прием противоположен рассмотренному выше. То есть когда все смешанные числа заменяются на неправильные дроби. Алгоритм действий будет таким:

  • разделить числитель на знаменатель до получения остатка;
  • записать частное на месте целой части смешанного;
  • остаток следует разместить над чертой;
  • делитель будет знаменателем.

Примеры такого преобразования:

76/14; 76:14 = 5 с остатком 6; ответом будет 5 целых и 6/14; дробную часть в этом примере нужно сократить на 2, получится 3/7; итоговый ответ — 5 целых 3/7.

108/54; после деления получается частное 2 без остатка; это значит, что не все неправильные дроби удается представить в виде смешанного числа; ответом будет целое — 2.

Как целое число превратить в неправильную дробь?

Бывают ситуации, когда необходимо и такое действие. Чтобы получить неправильные дроби с заранее известным знаменателем, потребуется выполнить такой алгоритм:

  • умножить целое число на нужный знаменатель;
  • записать это значение над чертой;
  • разместить под ней знаменатель.

Самый простой вариант, когда знаменатель равен единице. Тогда ничего умножать не нужно. Достаточно просто написать целое число, которое дано в примере, а под чертой расположить единицу.

Пример : 5 сделать неправильной дробью со знаменателем 3. После умножения 5 на 3 получается 15. Это число будет знаменателем. Ответ задания дробь: 15/3.

Два подхода к решению заданий с разными числами

В примере требуется вычислить сумму и разность, а также произведение и частное двух чисел: 2 целых 3/5 и 14/11.

В первом подходе смешанное число будет представлено в виде неправильной дроби.

После выполнения действий, описанных выше, получится такое значение: 13/5.

Для того чтобы узнать сумму, нужно привести дроби к одинаковому знаменателю. 13/5 после умножения на 11 станет 143/55. А 14/11 после умножения на 5 примет вид: 70/55. Для вычисления суммы нужно только сложить числители: 143 и 70, а потом записать ответ с одним знаменателем. 213/55 — эта неправильная дробь ответ задачи.

При нахождении разности эти же числа вычитаются: 143 — 70 = 73. Ответом будет дробь: 73/55.

При умножении 13/5 и 14/11 не нужно приводить к общему знаменателю. Достаточно перемножить попарно числители и знаменатели. Получится ответ: 182/55.

Так же и при делении. Для правильного решения нужно заменить деление на умножение и перевернуть делитель: 13/5: 14/11 = 13/5 х 11/14 = 143/70.

Во втором подходе неправильная дробь обращается в смешанное число.

После выполнения действий алгоритма 14/11 обратится в смешанное число с целой частью 1 и дробной 3/11.

Во время вычисления суммы нужно сложить целые и дробные части по отдельности. 2 + 1 = 3, 3/5 + 3/11 = 33/55 + 15/55 = 48/55. Итоговый ответ получается 3 целых 48/55. В первом подходе была дробь 213/55. Проверить правильность можно, переведя его в смешанное число. После деления 213 на 55 получается частное 3 и остаток 48. Нетрудно заметить, что ответ правильный.

При вычитании знак «+» заменяется на «-». 2 — 1 = 1, 33/55 — 15/55 = 18/55. Для проверки ответ из предыдущего подхода нужно перевести в смешанное число: 73 делится на 55 и получается частное 1 и остаток 18.

Для нахождения произведения и частного пользоваться смешанными числами неудобно. Здесь всегда рекомендуется переходить к неправильным дробям.

Виды дробей. Определения обыкновенной дроби, правильной дроби, неправильной дроби, смешанного числа и десятичной дроби.

Чтобы сто раз не повторяться мы решили сделать страницу о видах дробей, какие виды дробей бывают, как эти виды и типы дробей называются. Ну а темы, различных математический действий с этими дробями по ссылке сверху…

Виды, типы дробей

Дроби делятся на десятичные.

Какая дробь называется десятичной?

Записываются в строчку имеют вид обычного числа, но только в нём присутствует точка.
До точки называется целое, после точки десятичная часть например:

15.1 – 15 целых одна десятая
15.25 – 15 целых 25 сотых

Обычные дроби:

Какая дробь называется обычной?

Тип или вид обычных дробей в свою очередь делится на правильную и неправильную дробь

Какая дробь называется правильная?

Правильная дробь – это когда числитель (верхняя часть дроби) меньше знаменателя. Записывается в виде двух чисел, расположенных друг над другом, разделённых горизонтальной линией.
Звучит правильная дробь так(например) — «одна вторая» и записывается так:
12

Какая дробь называется не правильная?

Не правильная дробь отличается от правильной тем, что числитель больше знаменателя.
Записывается точно так же и звучит так же!
Неправленая дробь – например звучит «три вторых» и выглядит так:
32Смешанная дробь:

Какая дробь называется не смешанная?

Смешанная дробь получается при выделении целого числа из неправильной дроби. Из правильной дроби смешанную дробь сделать нельзя! Возьмем выше приведенную неправильную дробь и сделаем из неё смешанную. Звучит так : «одна целая одна вторая» — записывается впереди дроби пишется целое, за целым пишется дробь. Не будем повторяться – здесь мы уже один раз превращали неправильную дробь в смешанную. 32 => 112

Написать что-нибудь…

какие бывают дроби , какие бывают дроби в математике , какие виды дробей бывают, какие бывают десятичные дроби , какие бывают неправильные дроби , какие бывают дроби в математике 6 класс , какие бывают дроби в математике 5 класс , какая бывает дробь для охоты, » />

Квадрат правильной дроби всегда меньше самой дроби. Неправильная дробь. Какая дробь называется правильной

Делятся на правильные и неправильные.

Правильные дроби

Правильная дробь — это обыкновенная дробь, у которой числитель меньше знаменателя.

Чтобы узнать является ли дробь правильной, надо сравнить её члены между собой. Члены дроби сравниваются в соответствии с правилом сравнения натуральных чисел .

Пример. Рассмотрим дробь:

Пример:

Правила перевода и дополнительные примеры можно посмотреть в теме Перевод неправильной дроби в смешанное число . Также для перевода неправильной дроби в смешанное число вы можете воспользоваться онлайн калькулятором .

Сравнение правильных и неправильных дробей

Любая неправильная обыкновенная дробь больше правильной, так как правильная дробь всегда меньше единицы, а неправильная больше единицы или равна ей.

Пример:

Правила сравнения и дополнительные примеры можно посмотреть в теме Сравнение обыкновенных дробей . Также для сравнения дробей или проверки сравнения вы можете воспользоваться

Правильные и неправильные дроби отталкивают учеников 5 класса математики своими названиями. Тем не менее, ничего страшного в этих числах нет. Чтобы не допускать ошибок в вычислениях и развеять все тайны, связанные с этими числами, рассмотрим тему в подробности.

Что такое дробь?

Дробью зовут незавершенную операцию деления. Еще один вариант: дробь это часть целого. Числитель это количество частей, принятых к расчету. Знаменатель общее количество частей, на которое разделили целое.

Виды дробей

Выделяют следующие виды дробей:

  • Обыкновенная дробь. Это дробь, у которой числитель меньше знаменателя.
  • Неправильная дробь, у которой числитель больше знаменателя.
  • Смешанное число, которое имеет целую и дробную часть
  • Десятичная дробь. Это число, у которого в знаменателе всегда степень числа 10. Записывается такая дробь с помощью разделительной запятой.

Какая дробь называется правильной?

Правильной дробью называют обыкновенную дробь. Этот подвид дробей появился раньше прочих. Позже виды чисел увеличивались, открывались и создавались новые числа и дроби. Первую дробь называют правильной, потому что именно она отражает смысл, который вкладывали древние математики в понятие дроби: это часть числа. При этом эта часть всегда меньше целого, то есть, 1.

Почему неправильную дробь так называют?

Неправильная дробь больше 1. То есть она уже немного не соответствует первому определению. Это уже не часть целого. Можно представлять себе неправильную дробь, как кусочки нескольких пирогов. Ведь пирог не всегда один. Тем не менее, дробь считается неправильной.

Неправильную дробь не принято оставлять в результате вычислений. Лучше преобразовать ее в смешанное число.

Как перевести правильную дробь в неправильную?

Перевести правильную дробь в неправильную или наоборот невозможно. Это разные категории чисел. Но некоторые ученики часто путают понятия и называют перевод неправильной дроби в смешанные числа превращением неправильной дроби в правильную.

В смешанные числа неправильную дробь переводят достаточно часто, как и смешанные числа в неправильные дроби. Чтобы перевести неправильную дробь в смешанное число, нужно числитель поделить на знаменатель с остатком. Остаток в этом случае станет числителем дробной части, частное станет целой частью, а знаменатель останется прежним.

Что мы узнали?

Мы вспомнили, что такое дробь. Повторили все виды дробей и сказали, какую дробь называют правильной. Отдельно отметили, почему неправильная дробь получила такое название. Сказали, что перевести неправильную дробь в правильную или наоборот не получится. Последнее утверждение можно считать правилом правильных и неправильных дробей.

Тест по теме

Оценка статьи

Средняя оценка: 4.2 . Всего получено оценок: 260.

Обыкновенные дроби делятся на \textit{правильные} и \textit{неправильные} дроби. Такое разделение основано на сравнении числителя и знаменателя.

Правильные дроби

Правильной дробью называется обыкновенная дробь $\frac{m}{n}$, у которой числитель меньше знаменателя, т.е. $m

Пример 1

Например, дроби $\frac{1}{3}$, $\frac{9}{123}$, $\frac{77}{78}$, $\frac{378567}{456298}$ являются правильными, так как в каждой из них числитель меньше знаменателя, что отвечает определению правильной дроби.

Существует определение правильной дроби, которое базируется на сравнении дроби с единицей.

правильной , если она меньше единицы:

Пример 2

Например, обыкновенная дробь $\frac{6}{13}$ является правильной, т.к. выполняется условие $\frac{6}{13}

Неправильные дроби

Неправильной дробью называется обыкновенная дробь $\frac{m}{n}$, у которой числитель больше или равен знаменателю, т.е. $m\ge n$.

Пример 3

Например, дроби $\frac{5}{5}$, $\frac{24}{3}$, $\frac{567}{113}$, $\frac{100001}{100000}$ являются неправильными, так как в каждой из них числитель больше или равен знаменателю, что соответствует определению неправильной дроби.

Дадим определение неправильной дроби, которое базируется на ее сравнении с единицей.

Обыкновенная дробь $\frac{m}{n}$ является неправильной , если она равна или больше единицы:

\[\frac{m}{n}\ge 1\]

Пример 4

Например, обыкновенная дробь $\frac{21}{4}$ является неправильной, т.к. выполняется условие $\frac{21}{4} >1$;

обыкновенная дробь $\frac{8}{8}$ является неправильной, т.к. выполняется условие $\frac{8}{8}=1$.

Рассмотрим более подробно понятие неправильной дроби.

Возьмем для примера неправильную дробь $\frac{7}{7}$. Значение этой дроби — взяли семь долей предмета, который поделен на семь одинаковых долей. Таким образом, из семи долей, которые есть в наличии, можно составить весь предмет. Т.е. неправильная дробь $\frac{7}{7}$ описывает целый предмет и $\frac{7}{7}=1$. Итак, неправильные дроби, у которых числитель равен знаменателю, описывают один целый предмет и такая дробь может быть заменена на натуральное число $1$.

    $\frac{5}{2}$ — достаточно очевидно, что из этих пяти вторых долей можно составить $2$ целых предмета (один целый предмет будут составлять $2$ доли, а для составления двух целых предметов нужны $2+2=4$ доли) и остается одна вторая доля. Т.е., неправильная дробь $\frac{5}{2}$ описывает $2$ предмета и $\frac{1}{2}$ долю этого предмета.

    $\frac{21}{7}$ — из двадцати одной седьмых долей можно составить $3$ целых предмета ($3$ предмета по $7$ долей в каждом). Т.е. дробь $\frac{21}{7}$ описывает $3$ целых предмета.

Из рассмотренных примеров можно сделать следующий вывод: неправильную дробь можно заменить натуральным числом, если числитель нацело делится на знаменатель (например, $\frac{7}{7}=1$ и $\frac{21}{7}=3$), или суммой натурального числа и правильной дроби, если числитель нацело не делится на знаменатель (например,$\ \frac{5}{2}=2+\frac{1}{2}$). Поэтому такие дроби и называются неправильными .

Определение 1

Процесс представления неправильной дроби в виде суммы натурального числа и правильной дроби (например, $\frac{5}{2}=2+\frac{1}{2}$) называется выделением целой части из неправильной дроби .

При работе с неправильными дробями прослеживается тесная связь между ними и смешанными числами.

Неправильная дробь часто записывается в виде смешанного числа — числа, которое состоит из целой и дробной части.

Чтобы записать неправильную дробь в виде смешанного числа, необходимо разделить числитель на знаменатель с остатком. Частное будет составлять целую часть смешанного числа, остаток — числитель дробной части, а делитель — знаменатель дробной части.

Пример 5

Записать неправильную дробь $\frac{37}{12}$ в виде смешанного числа.

Решение.

Разделим числитель на знаменатель с остатком:

\[\frac{37}{12}=37:12=3\ (остаток\ 1)\] \[\frac{37}{12}=3\frac{1}{12}\]

Ответ. $\frac{37}{12}=3\frac{1}{12}$.

Чтобы записать смешанное число в виде неправильной дроби, необходимо знаменатель умножить на целую часть числа, к произведению, которое получилось, прибавить числитель дробной части и записать полученную сумму в числитель дроби. Знаменатель неправильной дроби будет равен знаменателю дробной части смешанного числа.

Пример 6

Записать смешанное число $5\frac{3}{7}$ в виде неправильной дроби.

Решение.

Ответ. $5\frac{3}{7}=\frac{38}{7}$.

Сложение смешанного числа и правильной дроби

Сложение смешанного числа $a\frac{b}{c}$ и правильной дроби $\frac{d}{e}$ выполняет прибавлением к данной дроби дробной части данного смешанного числа:

Пример 7

Выполнить сложение правильной дроби $\frac{4}{15}$ и смешанного числа $3\frac{2}{5}$.

Решение.

Воспользуемся формулой сложения смешанного числа и правильной дроби:

\[\frac{4}{15}+3\frac{2}{5}=3+\left(\frac{2}{5}+\frac{4}{15}\right)=3+\left(\frac{2\cdot 3}{5\cdot 3}+\frac{4}{15}\right)=3+\frac{6+4}{15}=3+\frac{10}{15}\]

По признаку деления на число \textit{5 }можно определить, что дробь $\frac{10}{15}$ — сократима. Выполним сокращение и найдем результат сложения:

Итак, результатом сложения правильной дроби $\frac{4}{15}$ и смешанного числа $3\frac{2}{5}$ будет $3\frac{2}{3}$.

Ответ: $3\frac{2}{3}$

Сложение смешанного числа и неправильной дроби

Сложение неправильной дроби и смешанного числа сводят к сложению двух смешанных чисел, для чего достаточно выделить целую часть из неправильной дроби.

Пример 8

Вычислить сумму смешанного числа $6\frac{2}{15}$ и неправильной дроби $\frac{13}{5}$.

Решение.

Сначала выделим целую часть из неправильной дроби $\frac{13}{5}$:

Ответ: $8\frac{11}{15}$.

При слове «дроби» у многих бегут мурашки. Потому что вспоминается школа и задания, которые решались на математике. Это являлось обязанностью, которую необходимо было выполнить. А что если относиться к заданиям, содержащим правильные и неправильные дроби, как к головоломке? Ведь многие взрослые решают цифровые и японские кроссворды. Разобрались в правилах, и все. Так же и здесь. Стоит только вникнуть в теорию — и все встанет на свои места. А примеры превратятся в способ потренировать мозг.

Какие виды дробей существуют?

Для начала о том, что это такое. Дробь — число, которое имеет некоторую часть от единицы. Ее можно записать в двух видах. Первый носит название обыкновенной. То есть такая, у которой есть горизонтальная или наклонная черта. Она приравнивается к знаку деления.

В такой записи число, стоящее над черточкой, называется числителем, а под ней — знаменателем.

Среди обыкновенных выделяют правильные и неправильные дроби. У первых числитель по модулю всегда меньше знаменателя. Неправильные потому так и называются, что у них все наоборот. Значение правильной дроби всегда меньше единицы. В то время как неправильная всегда больше этого числа.

Есть еще смешанные числа, то есть такие у которых имеются целая и дробная части.

Второй вид записи — десятичная дробь. О ней отдельный разговор.

Чем отличаются неправильные дроби от смешанных чисел?

По своей сути, ничем. Это просто разная запись одного и того же числа. Неправильные дроби после несложных действий легко становятся смешанными числами. И наоборот.

Все зависит от конкретной ситуации. Иногда в заданиях удобнее использовать неправильную дробь. А порой необходимо перевести ее в смешанное число и тогда пример решится очень легко. Поэтому, что использовать: неправильные дроби, смешанные числа, — зависит от наблюдательности решающего задачу.

Смешанное число еще сравнивают с суммой целой части и дробной. Причем вторая всегда меньше единицы.

Как представить смешанное число в виде неправильной дроби?

Если требуется выполнить какое-либо действие с несколькими числами, которые записаны в разных видах, то нужно сделать их одинаковыми. Один из методов — представить числа в виде неправильных дробей.

Для этой цели потребуется выполнить действия по такому алгоритму:

  • умножить знаменатель на целую часть;
  • прибавить к результату значение числителя;
  • записать ответ над чертой;
  • знаменатель оставить тем же.

Вот примеры того, как записать неправильные дроби из смешанных чисел:

  • 17 ¼ = (17 х 4 + 1) : 4 = 69/4;
  • 39 ½ = (39 х 2 + 1) : 2 = 79/2.

Как записать неправильную дробь в виде смешанного числа?

Следующий прием противоположен рассмотренному выше. То есть когда все смешанные числа заменяются на неправильные дроби. Алгоритм действий будет таким:

  • разделить числитель на знаменатель до получения остатка;
  • записать частное на месте целой части смешанного;
  • остаток следует разместить над чертой;
  • делитель будет знаменателем.

Примеры такого преобразования:

76/14; 76:14 = 5 с остатком 6; ответом будет 5 целых и 6/14; дробную часть в этом примере нужно сократить на 2, получится 3/7; итоговый ответ — 5 целых 3/7.

108/54; после деления получается частное 2 без остатка; это значит, что не все неправильные дроби удается представить в виде смешанного числа; ответом будет целое — 2.

Как целое число превратить в неправильную дробь?

Бывают ситуации, когда необходимо и такое действие. Чтобы получить неправильные дроби с заранее известным знаменателем, потребуется выполнить такой алгоритм:

  • умножить целое число на нужный знаменатель;
  • записать это значение над чертой;
  • разместить под ней знаменатель.

Самый простой вариант, когда знаменатель равен единице. Тогда ничего умножать не нужно. Достаточно просто написать целое число, которое дано в примере, а под чертой расположить единицу.

Пример : 5 сделать неправильной дробью со знаменателем 3. После умножения 5 на 3 получается 15. Это число будет знаменателем. Ответ задания дробь: 15/3.

Два подхода к решению заданий с разными числами

В примере требуется вычислить сумму и разность, а также произведение и частное двух чисел: 2 целых 3/5 и 14/11.

В первом подходе смешанное число будет представлено в виде неправильной дроби.

После выполнения действий, описанных выше, получится такое значение: 13/5.

Для того чтобы узнать сумму, нужно привести дроби к одинаковому знаменателю. 13/5 после умножения на 11 станет 143/55. А 14/11 после умножения на 5 примет вид: 70/55. Для вычисления суммы нужно только сложить числители: 143 и 70, а потом записать ответ с одним знаменателем. 213/55 — эта неправильная дробь ответ задачи.

При нахождении разности эти же числа вычитаются: 143 — 70 = 73. Ответом будет дробь: 73/55.

При умножении 13/5 и 14/11 не нужно приводить к общему знаменателю. Достаточно перемножить попарно числители и знаменатели. Получится ответ: 182/55.

Так же и при делении. Для правильного решения нужно заменить деление на умножение и перевернуть делитель: 13/5: 14/11 = 13/5 х 11/14 = 143/70.

Во втором подходе неправильная дробь обращается в смешанное число.

После выполнения действий алгоритма 14/11 обратится в смешанное число с целой частью 1 и дробной 3/11.

Во время вычисления суммы нужно сложить целые и дробные части по отдельности. 2 + 1 = 3, 3/5 + 3/11 = 33/55 + 15/55 = 48/55. Итоговый ответ получается 3 целых 48/55. В первом подходе была дробь 213/55. Проверить правильность можно, переведя его в смешанное число. После деления 213 на 55 получается частное 3 и остаток 48. Нетрудно заметить, что ответ правильный.

При вычитании знак «+» заменяется на «-». 2 — 1 = 1, 33/55 — 15/55 = 18/55. Для проверки ответ из предыдущего подхода нужно перевести в смешанное число: 73 делится на 55 и получается частное 1 и остаток 18.

Для нахождения произведения и частного пользоваться смешанными числами неудобно. Здесь всегда рекомендуется переходить к неправильным дробям.

Обыкновенные дроби делятся на \textit{правильные} и \textit{неправильные} дроби. Такое разделение основано на сравнении числителя и знаменателя.

Правильные дроби

Правильной дробью называется обыкновенная дробь $\frac{m}{n}$, у которой числитель меньше знаменателя, т.е. $m

Пример 1

Например, дроби $\frac{1}{3}$, $\frac{9}{123}$, $\frac{77}{78}$, $\frac{378567}{456298}$ являются правильными, так как в каждой из них числитель меньше знаменателя, что отвечает определению правильной дроби.

Существует определение правильной дроби, которое базируется на сравнении дроби с единицей.

правильной , если она меньше единицы:

Пример 2

Например, обыкновенная дробь $\frac{6}{13}$ является правильной, т.к. выполняется условие $\frac{6}{13}

Неправильные дроби

Неправильной дробью называется обыкновенная дробь $\frac{m}{n}$, у которой числитель больше или равен знаменателю, т.е. $m\ge n$.

Пример 3

Например, дроби $\frac{5}{5}$, $\frac{24}{3}$, $\frac{567}{113}$, $\frac{100001}{100000}$ являются неправильными, так как в каждой из них числитель больше или равен знаменателю, что соответствует определению неправильной дроби.

Дадим определение неправильной дроби, которое базируется на ее сравнении с единицей.

Обыкновенная дробь $\frac{m}{n}$ является неправильной , если она равна или больше единицы:

\[\frac{m}{n}\ge 1\]

Пример 4

Например, обыкновенная дробь $\frac{21}{4}$ является неправильной, т.к. выполняется условие $\frac{21}{4} >1$;

обыкновенная дробь $\frac{8}{8}$ является неправильной, т.к. выполняется условие $\frac{8}{8}=1$.

Рассмотрим более подробно понятие неправильной дроби.

Возьмем для примера неправильную дробь $\frac{7}{7}$. Значение этой дроби — взяли семь долей предмета, который поделен на семь одинаковых долей. Таким образом, из семи долей, которые есть в наличии, можно составить весь предмет. Т.е. неправильная дробь $\frac{7}{7}$ описывает целый предмет и $\frac{7}{7}=1$. Итак, неправильные дроби, у которых числитель равен знаменателю, описывают один целый предмет и такая дробь может быть заменена на натуральное число $1$.

    $\frac{5}{2}$ — достаточно очевидно, что из этих пяти вторых долей можно составить $2$ целых предмета (один целый предмет будут составлять $2$ доли, а для составления двух целых предметов нужны $2+2=4$ доли) и остается одна вторая доля. Т.е., неправильная дробь $\frac{5}{2}$ описывает $2$ предмета и $\frac{1}{2}$ долю этого предмета.

    $\frac{21}{7}$ — из двадцати одной седьмых долей можно составить $3$ целых предмета ($3$ предмета по $7$ долей в каждом). Т.е. дробь $\frac{21}{7}$ описывает $3$ целых предмета.

Из рассмотренных примеров можно сделать следующий вывод: неправильную дробь можно заменить натуральным числом, если числитель нацело делится на знаменатель (например, $\frac{7}{7}=1$ и $\frac{21}{7}=3$), или суммой натурального числа и правильной дроби, если числитель нацело не делится на знаменатель (например,$\ \frac{5}{2}=2+\frac{1}{2}$). Поэтому такие дроби и называются неправильными .

Определение 1

Процесс представления неправильной дроби в виде суммы натурального числа и правильной дроби (например, $\frac{5}{2}=2+\frac{1}{2}$) называется выделением целой части из неправильной дроби .

При работе с неправильными дробями прослеживается тесная связь между ними и смешанными числами.

Неправильная дробь часто записывается в виде смешанного числа — числа, которое состоит из целой и дробной части.

Чтобы записать неправильную дробь в виде смешанного числа, необходимо разделить числитель на знаменатель с остатком. Частное будет составлять целую часть смешанного числа, остаток — числитель дробной части, а делитель — знаменатель дробной части.

Пример 5

Записать неправильную дробь $\frac{37}{12}$ в виде смешанного числа.

Решение.

Разделим числитель на знаменатель с остатком:

\[\frac{37}{12}=37:12=3\ (остаток\ 1)\] \[\frac{37}{12}=3\frac{1}{12}\]

Ответ. $\frac{37}{12}=3\frac{1}{12}$.

Чтобы записать смешанное число в виде неправильной дроби, необходимо знаменатель умножить на целую часть числа, к произведению, которое получилось, прибавить числитель дробной части и записать полученную сумму в числитель дроби. Знаменатель неправильной дроби будет равен знаменателю дробной части смешанного числа.

Пример 6

Записать смешанное число $5\frac{3}{7}$ в виде неправильной дроби.

Решение.

Ответ. $5\frac{3}{7}=\frac{38}{7}$.

Сложение смешанного числа и правильной дроби

Сложение смешанного числа $a\frac{b}{c}$ и правильной дроби $\frac{d}{e}$ выполняет прибавлением к данной дроби дробной части данного смешанного числа:

Пример 7

Выполнить сложение правильной дроби $\frac{4}{15}$ и смешанного числа $3\frac{2}{5}$.

Решение.

Воспользуемся формулой сложения смешанного числа и правильной дроби:

\[\frac{4}{15}+3\frac{2}{5}=3+\left(\frac{2}{5}+\frac{4}{15}\right)=3+\left(\frac{2\cdot 3}{5\cdot 3}+\frac{4}{15}\right)=3+\frac{6+4}{15}=3+\frac{10}{15}\]

По признаку деления на число \textit{5 }можно определить, что дробь $\frac{10}{15}$ — сократима. Выполним сокращение и найдем результат сложения:

Итак, результатом сложения правильной дроби $\frac{4}{15}$ и смешанного числа $3\frac{2}{5}$ будет $3\frac{2}{3}$.

Ответ: $3\frac{2}{3}$

Сложение смешанного числа и неправильной дроби

Сложение неправильной дроби и смешанного числа сводят к сложению двух смешанных чисел, для чего достаточно выделить целую часть из неправильной дроби.

Пример 8

Вычислить сумму смешанного числа $6\frac{2}{15}$ и неправильной дроби $\frac{13}{5}$.

Решение.

Сначала выделим целую часть из неправильной дроби $\frac{13}{5}$:

Ответ: $8\frac{11}{15}$.

Дроби числитель и знаменатель примеры. Дроби, операции с дробями

Изучая царицу всех наук — математику, в определенный момент все сталкиваются с дробями. Хотя это понятие (как и сами виды дробей или математические действия с ними) совсем несложное, к нему нужно относиться внимательно, ведь в реальной жизни за пределами школы оно очень пригодится. Итак, давайте освежим свои знания о дробях: что это, для чего нужно, какие виды их бывают и как совершать с ними различные арифметические действия.

Ее величество дробь: это что такое

Дробями в математике называются числа, каждое из которых состоит из одной или более частей единицы. Такие дроби еще называют обыкновенными, либо простыми. Как правило, они записываются​ в виде двух чисел, которые разделены горизонтальной или слеш-чертой, она называется «дробной». Например: ½, ¾.

Верхнее, или первое из этих чисел — это числитель (показывает, сколько взято долей от числа), а нижнее, или второе — знаменатель (демонстрирует, на столько частей разделена единица).

Дробная черта фактически выполняет функции знака деления. К примеру, 7:9=7/9

Традиционно обыкновенные дроби меньше единицы. В то время как десятичные могут быть больше ее.

Для чего нужны дроби? Да для всего, ведь в реальном мире далеко не все числа целые. К примеру, две школьницы в столовой купили в складчину одну вкусную шоколадку. Когда они уже собрались делить десерт, встретили подружку и решили угостить и и ее. Однако теперь необходимо правильно разделить шоколадку, если учесть, что она состоит из 12 квадратиков.

Поначалу девчонки хотели разделить все поровну, и тогда каждой бы досталось по четыре кусочка. Но, раздумав, они решили угостить подружку, не 1/3, а 1/4 шоколадки. А поскольку школьницы плохо изучали дроби, то они не учли, что при подобном раскладе в результате у них останется 9 кусочков, которые очень плохо делятся на двоих. Этот довольно простой пример показывает, насколько важно уметь правильно находить часть от числа. А ведь в жизни подобных случаев гораздо больше.

Виды дробей: обыкновенные и десятичные

Все математические дроби делятся на два больших разряда: обыкновенные и десятичные. Об особенностях первого из них было рассказано в предыдущем пункте, так что теперь стоит уделить внимание второму.

Десятичной называют позиционную запись дроби числа, которая фиксируется на письме через запятую, без черточки или слеша. Например: 0,75, 0,5.

Фактически десятичная дробь идентична обыкновенной, однако, в ее знаменателе всегда единица с последующими нулями — отсюда произошло и ее название.

Число, предшествующее запятой, — это целая часть, а все находящееся после — дробная. Любую простую дробь можно перевести в десятичную. Так, указанные в предыдущем примере десятичные дроби можно записать как обычные: ¾ и ½.

Стоит отметить, что и десятичные, и обыкновенные дроби могут быть как положительными, так и отрицательными. Если перед ними стоит знак «-«, данная дробь отрицательная, если «+» — то положительная.

Подвиды обыкновенных дробей

Есть такие виды дробей простых.

Подвиды десятичной дроби

В отличие от простой, десятичная дробь делится всего на 2 вида.

  • Конечная — получила такое название из-за того, что после запятой у нее ограниченное (конечное) число цифр: 19,25.
  • Бесконечная дробь — это число с нескончаемым количеством цифр после запятой. К примеру, при делении 10 на 3 результатом будет бесконечная дробь 3,333…

Сложение дробей

Проводить различные арифметические манипуляции с дробями немного сложнее, чем с обычными числами. Однако, если усвоить основные правила, решить любой пример с ними не составит особого труда.

Например: 2/3+3/4. Наименьшим общим кратным для них будет 12, следовательно, необходимо, чтобы в каждом знаменателе стояло это число. Для этого числитель и знаменатель первой дроби умножаем на 4, получается 8/12, аналогично поступаем со вторым слагаемым, но только множим на 3 — 9/12. Теперь можно легко решить пример: 8/12+9/12= 17/12. Получившаяся дробь — это неправильная величина, поскольку числитель больше знаменателя. Ее можно и нужно пребразовать в правильную смешанную, разделив 17:12= 1 и 5/12.

В случае, если слагаются смешанные дроби, сначала действия совершаются с целыми числами, а потом с дробными.

Если в примере присутствует десятичная дробь и обычная, необходимо, чтобы обе стали простыми, потом привести их к одному знаменателю и сложить. К примеру 3,1+1/2. Число 3,1 можно записать как смешанную дробь 3 и 1/10 или как неправильную — 31/10. Общим знаменателем для слагаемых будет 10, поэтому нужно умножить поочередно числитель и знаменатель 1/2 на 5, получается 5/10. Далее можно легко все высчитать: 31/10+5/10=35/10. Полученный результат — неправильная сократимая дробь, приводим ее в нормальный вид, сократив на 5: 7/2=3 и 1/2, или десятичной — 3,5.

Если слагать 2 десятичные дроби, важно, чтобы после запятой было одинаковое количество цифр. Если это не так, нужно просто дописать необходимое количество нулей, ведь в десятичной дроби это можно сделать безболезненно. Например, 3,5+3,005. Чтобы решить это задание, нужно к первому числу прибавить 2 ноля и далее поочередно слагать: 3,500+3,005=3,505.

Вычитание дробей

Вычитая дроби, стоит поступать так же, как и при сложении: свести к общему знаменателю, отнять один числитель от другого, при необходимости перевести результат в смешанную дробь.

Например: 16/20-5/10. Общим знаменателем будет 20. Нужно привести вторую дробь к этому знаменателю, умножив обе ее части на 2, получается 10/20. Теперь можно решать пример: 16/20-10/20= 6/20. Однако этот результат относится к сократимым дробям, поэтому стоит поделить обе части на 2 и получается результат — 3/10.

Умножение дробей

Деление и умножение дробей — значительно более простые действия, нежели сложение и вычитание. Дело в том, что, выполняя эти задания, нет необходимости искать общий знаменатель.

Чтобы умножить дроби, нужно просто поочередно перемножить между собою оба числителя, а затем и оба знаменателя. Получившийся результат сократить, если дробь — это сократимая величина.

Например: 4/9х5/8. После поочередного умножения получается такой результат 4х5/9х8=20/72. Такая дробь сократима на 4, поэтому конечный ответ в примере — 5/18.

Как делить дроби

Деление дробей — тоже несложное действие, фактически оно все равно сводится к их умножению. Чтобы разделить одну дробь на другую, нужно вторую перевернуть и умножить на первую.

Например, деление дробей 5/19 и 5/7. Чтобы решить пример, нужно поменять местами знаменатель и числитель второй дроби и умножить: 5/19х7/5=35/95. Результат можно сократить на 5 — получается 7/19.

В случае, если необходимо разделить дробь на простое число, методика немного отличается. Изначально стоит записать это число как неправильную дробь, а потом делить по той же схеме. Например, 2/13:5 нужно записать как 2/13: 5/1. Теперь нужно перевернуть 5/1 и умножить получившиеся дроби: 2/13х1/5= 2/65.

Иногда приходится совершать деление дробей смешанных. С ними нужно поступать, как и с целыми числами: превратить в неправильные дроби, перевернуть делитель и умножить все. Например, 8 ½: 3. Превращаем все в неправильные дроби: 17/2: 3/1. Далее следует переворот 3/1 и умножение: 17/2х1/3= 17/6. Теперь следует перевести неправильную дробь в правильную — 2 целых и 5/6.

Итак, разобравшись с тем, что такое дроби и как можно с ними совершать различные арифметические действия, нужно постараться не забывать об этом. Ведь люди всегда более склонны делить что-то на части, нежели прибавлять, поэтому нужно уметь делать это правильно.

1 Что такое обыкновенные дроби. Виды дробей.
Дробь всегда означает какую то часть целого. Дело в том, что не всегда количество можно передать натуральными числами, то есть пересчитать: 1,2,3 и т.д. Как, например, обозначить половину арбуза или четверть часа? Вот для этого и появились дробные числа, или дроби.

Для начала нужно сказать, что вообще дробей бывает два вида: обыкновенные дроби и десятичные дроби. Обыкновенные дроби записываются так:
Десятичные дроби записываются по другому:


Обыкновенные дроби состоят из двух частей: вверху — числитель, внизу — знаменатель. Числитель и знаменатель разделяет дробная черта. Итак, запомните:

Любая дробь — это часть целого . За целое обычно принимают 1 (единицу). Знаменатель дроби показывает, на сколько частей разделили целое (1 ), а числитель — сколько частей взяли. Если мы разрезали торт на 6 одинаковых частей (в математике говорят долей ), то каждая часть торта будет равна 1/6. Если Вася съел 4 куска, то значит, он съел 4/6 .

С другой стороны, дробная черта — это не что иное, как знак деления. Поэтому дробь — это частное двух чисел — числителя и знаменателя. В тексте задач или в рецептах блюд дроби записываются обычно так: 2/3, 1/2 и т.д. Некоторые дроби получили собственное название, например, 1/2 — «половина», 1/3 — «треть», 1/4 — «четверть»
А теперь разберемся, какие бывают виды обыкновенных дробей.

2 Виды обыкновенных дробей

Обыкновенные дроби бывают трех видов: правильные, неправильные и смешанные:

Правильная дробь

Если числитель меньше, чем знаменатель, то такую дробь называют правильной, например: Правильная дробь всегда меньше 1.

Неправильная дробь

Если числитель больше, чем знаменатель или равен знаменателю, такая дробь называется неправильной , например:

Неправильная дробь больше единицы(если числитель больше знаменателя) или равна единице (если числитель равен знаменателю)

Смешанная дробь

Если дробь состоит из целого числа (целая часть) и правильной дроби (дробная часть), то такая дробь называется смешанной , например:

Смешанная дробь всегда больше единицы.

3 Преобразования дробей

В математике обыкновенные дроби часто приходится преобразовывать, то есть смешанную дробь превращать в неправильную и наоборот. Это необходимо для выполнения некоторых действий, например, умножения и деления.

Итак, любую смешанную дробь можно перевести в неправильную . Для этого целую часть умножают на знаменатель и прибавляют числитель дробной части. Полученную сумму берут числителем, а знаменатель оставляют тот же, например:

Любую неправильную дробь можно превратить в смешанную. Для этого делят числитель на знаменатель (с остатком).Полученное число будет целой частью, а остаток — числителем дробной части, например:

При этом говорят: «Мы выделили целую часть из неправильной дроби».

Необходимо запомнить еще одно правило: Любое целое число можно представить в виде обыкновенной дроби со знаменателем 1 , например:

Поговорим о том, как сравнивать дроби.

4 Сравнение дробей

При сравнении дробей может быть несколько вариантов: Легко сравнивать дроби с одинаковыми знаменателями, гораздо сложнее — если знаменатели разные. А есть еще и сравнение смешанных дробей. Но не волнуйтесь, сейчас мы подробно рассмотрим каждый вариант и научимся сравнивать дроби.

Из двух дробей с одинаковыми знаменателями, но разными числителями больше та дробь, у которой числитель больше, например:

Из двух дробей с одинаковыми числителями, но разными знаменателями больше та дробь, у которой знаменатель меньше, например:

Неправильная или смешанная дробь всегда больше правильной дроби, например:

При сравнении двух смешанных дробей больше та дробь, у которой целая часть больше, например:

Если целые части у смешанных дробей одинаковые, больше та дробь, у которой дробная часть больше, например:

Сравнивать дроби с разными числителями и знаменателями без их преобразования нельзя. Сначала дроби нужно привести к одному знаменателю, а затем сравнить их числители. Больше та дробь, у которой числитель будет больше. А вот как приводить дроби к одинаковому знаменателю, мы рассмотрим в следующих двух разделах статьи статьи. Сначала мы рассмотрим основное свойство дроби и сокращение дробей, а затем непосредственно приведение дробей к одному знаменателю.

5 Основное свойство дроби. Сокращение дробей. Понятие о НОД.

Запомните: складывать и вычитать, а также сравнивать можно только дроби, у которых одинаковые знаменатели . Если знаменатели разные, то сначала нужно привести дроби к одному знаменателю, то есть так преобразовать одну из дробей, чтобы ее знаменатель стал таким же, как у второй дроби.

У дробей есть одно важное свойство, называемое также основным свойством дроби:

Если и числитель, и знаменатель дроби умножить или разделить на одно и то же число, то величина дроби при этом не изменится :

Благодаря этому свойству мы можем сокращать дроби :

Сократить дробь — значит разделить и числитель, и знаменатель на одно и то же число (смотрите пример чуть выше). Когда мы сокращаем дробь, то можно расписать наши действия так:

Чаще же в тетради сокращают дробь так:

Но запомните: сокращать можно только множители. Если в числителе или знаменателе сумма или разность, сокращать слагаемые нельзя. Пример:

Нужно сначала преобразовать сумму в множитель:

Иногда, при работе с большими числами, для того, чтобы сократить дробь, удобно найти наибольший общий делитель числителя и знаменателя (НОД)

Наибольший общий делитель (НОД) нескольких чисел — это наибольшее натуральное число, на которое эти числа делятся без остатка.

Для того, чтобы найти НОД двух чисел (например, числителя и знаменателя дроби), нужно разложить оба числа на простые множители, отметить одинаковые множители в обоих разложениях, и перемножить эти множители. Полученное произведение и будет НОД. Например, нам нужно сократить дробь:

Найдем НОД чисел 96 и 36:

НОД нам показывает, что и в числителе, и в знаменателе есть множитель12, и мы легко сокращаем дробь.

Иногда, чтобы привести дроби к одному знаменателю, достаточно сократить одну из дробей. Но чаще бывает необходимо подбирать дополнительные множители для обеих дробей.Сейчас мы рассмотрим, как это делается. Итак:

6 Как приводить дроби к одному знаменателю. Наименьшее общее кратное (НОК).

Когда мы приводим дроби к одинаковому знаменателю, мы подбираем для знаменателя такое число, которое бы делилось и на первый, и на второй знаменатель (то есть было бы кратным обоим знаменателям, выражаясь математическим языком). И желательно, чтобы число это было как можно меньшим, так удобнее считать. Таким образом, мы должны найти НОК обоих знаменателей.

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

Однако вернемся к нашим дробям. После того, как мы подобрали или письменно вычислили НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители . Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

Таким образом мы привели наши дроби к одному знаменателю — 15.

7 Сложение и вычитание дробей

Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Сложение и вычитание смешанных дробей с одинаковыми знаменателями

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью:

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

Вычитание проводится аналогично: целая часть вычитается из целой, а дробная — из дробной части:

Если дробная часть вычитаемого больше, чем дробная часть уменьшаемого, «занимаем» единицу из целой части, превращая уменьшаемое в неправильную дробь, а дальше действуем как обычно:

Аналогично вычитаем из целого числа дробь :

Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

Если мы складываем целое число и смешанную дробь , мы прибавляем это число к целой части дроби, например:

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как при сложении дробей с одинаковыми знаменателями (сложить числители):

При вычитании действуем аналогично:

Если работаем со смешанными дробями, приводим к одинаковому знаменателю их дробные части и далее вычитаем как обычно: целую часть из целой, а дробную — из дробной части:

8 Умножение и деление дробей.

Умножать и делить обыкновенные дроби гораздо проще, чем складывать и вычитать, так как не нужно приводить их к одному знаменателю. Запомните простые правила умножения и деления дробей:

Перед тем, как перемножать числа в числителе и знаменателе желательно сократить дробь, то есть избавиться от одинаковых множителей в числителе и знаменателе, как в нашем примере.

Чтобы разделить дробь на натуральное число , нужно знаменатель умножить на это число, а числитель оставить без изменений:

Например:

Деление дроби на дробь

Чтобы разделить одну дробь на другую, нужно делимое умножить на число, обратное делителю (обратную дробь).Что же это за обратная дробь?

Если мы перевернем дробь, то есть поменяем местами числитель и знаменатель, то получим обратную дробь. Произведение дроби и обратной ей дроби дает единицу. В математике такие числа называют взаимно обратными числами:

Например, числа — взаимно обратные, так как

Таким образом, вернемся к делению дроби на дробь:

Чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю :

Например:

При делении смешанных дробей нужно так же, как и при умножении, сначала перевести их в неправильные дроби:

При умножении и делении дробей на целые натуральные числа , можно представлять эти числа так же в виде дробей со знаменателем 1 .

И при делении целого числа на дробь представляем это число в виде дроби со знаменателем 1 :

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Дроби в старших классах не сильно досаждают. До поры до времени. Пока не столкнётесь со степенями с рациональными показателями да логарифмами. А вот там…. Давишь, давишь калькулятор, а он все полное табло каких-то циферок кажет. Приходится головой думать, как в третьем классе.

Давайте уже разберёмся с дробями, наконец! Ну сколько можно в них путаться!? Тем более, это всё просто и логично. Итак, какие бывают дроби?

Виды дробей. Преобразования.

Дроби бывают трёх видов.

1. Обыкновенные дроби , например:

Иногда вместо горизонтальной чёрточки ставят наклонную черту: 1/2, 3/4, 19/5, ну, и так далее. Здесь мы часто будем таким написанием пользоваться. Верхнее число называется числителем , нижнее — знаменателем. Если вы постоянно путаете эти названия (бывает…), скажите себе с выражением фразу: «Ззззз апомни! Ззззз наменатель — вниззззз у!» Глядишь, всё и ззззапомнится.)

Чёрточка, что горизонтальная, что наклонная, означает деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо чёрточки вполне можно поставить знак деления — две точки.

Когда деление возможно нацело, это надо делать. Так, вместо дроби «32/8» гораздо приятнее написать число «4». Т.е. 32 просто поделить на 8.

32/8 = 32: 8 = 4

Я уж и не говорю про дробь «4/1». Которая тоже просто «4». А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например:

Именно в таком виде нужно будет записывать ответы на задания «В».

3. Смешанные числа , например:

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их всяко надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задачке и зависните… На пустом месте. Но мы-то вспомним эту процедуру! Чуть ниже.

Наиболее универсальны обыкновенные дроби . С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буковки, это ничего не меняет. В том смысле что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями !

Основное свойство дроби.

Итак, поехали! Для начала я вас удивлю. Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

Понятно, что писать можно дальше, до посинения. Синусы и логарифмы пусть вас не смущают, с ними дальше разберёмся. Главное понять, что все эти разнообразные выражения есть одна и та же дробь . 2/3.

А оно нам надо, все эти превращения? Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей . Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но… человек — существо творческое. Ошибиться везде может! Особенно, если приходится сокращать не дробь типа 5/10, а дробное выражение со всякими буковками.

Как правильно и быстро сокращать дроби, не делая лишней работы, можно прочитать в особом Разделе 555 .

Нормальный ученик не заморачивается делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение:

Тут и думать нечего, зачеркиваем букву «а» сверху и двойку снизу! Получаем:

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на «а». Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть «а» в выражении

и получить снова

Что будет категорически неверно. Потому что здесь весь числитель на «а» уже не делится ! Эту дробь сократить нельзя. Кстати, такое сокращение – это, гм… серьезный вызов преподавателю. Такого не прощают! Запомнили? При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё… пока сокращается, короче. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и наоборот без калькулятора ! Это важно на ЕГЭ, верно?

Как переводить дроби из одного вида в другой.

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это ноль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обычную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Типа 0,3. Это три десятых, т.е. 3/10.

А если целых — не ноль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель — то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Элементарно, Ватсон! Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную .

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете на ЕГЭ!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в ответе на задание раздела «В» получилось 1/2? Что в ответ писать будем? Там десятичные требуются…

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно…)? На 5, очевидно. Смело умножаем знаменатель (это нам надо) на 5. Но, тогда и числитель надо умножить тоже на 5. Это уже математика требует! Получим 1/2 = 1х5/2х5 = 5/10 = 0,5. Вот и всё.

Однако, знаменатели всякие попадаются. Попадётся, например дробь 3/16. Попробуй, сообрази тут, на что 16 умножить, чтоб 100 получилось, или 1000… Не получается? Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, на бумажке, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и на бумажке, мы получим 0,3333333… Это значит, что 1/3 в точную десятичную дробь не переводится . Так же, как и 1/7, 5/6 и так далее. Много их, непереводимых. Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную !

Кстати, это полезная информация для самопроверки. В разделе «В» в ответ надо десятичную дробь записывать. А у вас получилось, например, 4/3. Эта дробь не переводится в десятичную. Это означает, что где-то вы ошиблись по дороге! Вернитесь, проверьте решение.

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их всяко нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать шестиклассника и спросить у него. Но не всегда шестиклассник окажется под руками… Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задачке вы с ужасом увидели число:

Спокойно, без паники соображаем. Целая часть — это 1. Единица. Дробная часть — 3/7. Стало быть, знаменатель дробной части — 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Ясненько? Тогда закрепите успех! Переведите в обыкновенные дроби. У вас должно получится 10/7, 7/2, 23/10 и 21/4.

Обратная операция — перевод неправильной дроби в смешанное число — в старших классах редко требуется. Ну если уж… И если Вы — не в старших классах — можете заглянуть в особый Раздел 555 . Там же, кстати, и про неправильные дроби узнаете.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Отвечаю. Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать . Ну а если написано, что-нибудь типа 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам !

Если в задании сплошь десятичные дроби, но гм… злые какие-то, перейдите к обыкновенным, попробуйте! Глядишь, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби?

0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. О, ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги этого урока.

1. Дроби бывают трёх видов. Обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное — перейти к обыкновенным дробям.

Теперь можно потренироваться. Для начала переведите эти десятичные дроби в обыкновенные:

3,8; 0,75; 0,15; 1,4; 0,725; 0,012

Должны получиться вот такие ответы (в беспорядке!):

На этом и завершим. В этом уроке мы освежили в памяти ключевые моменты по дробям. Бывает, правда, что освежать особо нечего…) Если уж кто совсем крепко забыл, или ещё не освоил… Тем можно пройти в особый Раздел 555 . Там все основы подробненько расписаны. Многие вдруг всё понимать начинают. И решают дроби с лёту).

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Энциклопедичный YouTube

  • 1 / 5

    Обыкновенная (или простая ) дробь — запись рационального числа в виде ± m n {\displaystyle \pm {\frac {m}{n}}} или ± m / n , {\displaystyle \pm m/n,} где n ≠ 0. {\displaystyle n\neq 0.} Горизонтальная или косая черта обозначает знак деления, в результате чего получается частное. Делимое называется числителем дроби, а делитель — знаменателем .

    Обозначения обыкновенных дробей

    Есть несколько видов записи обыкновенных дробей в печатном виде:

    Правильные и неправильные дроби

    Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, не являющаяся правильной, называется неправильной , и представляет рациональное число, по модулю большее или равное единице.

    Например, дроби 3 5 {\displaystyle {\frac {3}{5}}} , 7 8 {\displaystyle {\frac {7}{8}}} и — правильные дроби, в то время как 8 3 {\displaystyle {\frac {8}{3}}} , 9 5 {\displaystyle {\frac {9}{5}}} , 2 1 {\displaystyle {\frac {2}{1}}} и 1 1 {\displaystyle {\frac {1}{1}}} — неправильные дроби. Всякое отличное от нуля целое число можно представить в виде неправильной обыкновенной дроби со знаменателем 1.

    Смешанные дроби

    Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Любое рациональное число можно записать в виде смешанной дроби. В противоположность смешанной дроби, дробь, содержащая лишь числитель и знаменатель, называется простой .

    Например, 2 3 7 = 2 + 3 7 = 14 7 + 3 7 = 17 7 {\displaystyle 2{\frac {3}{7}}=2+{\frac {3}{7}}={\frac {14}{7}}+{\frac {3}{7}}={\frac {17}{7}}} . В строгой математической литературе такую запись предпочитают не использовать из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь, а также из-за более громоздкой записи и менее удобных вычислений.

    Составные дроби

    Многоэтажной, или составной, дробью называется выражение, содержащее несколько горизонтальных (или реже — наклонных) черт:

    1 2 / 1 3 {\displaystyle {\frac {1}{2}}/{\frac {1}{3}}} или 1 / 2 1 / 3 {\displaystyle {\frac {1/2}{1/3}}} или 12 3 4 26 {\displaystyle {\frac {12{\frac {3}{4}}}{26}}}

    Десятичные дроби

    Десятичной дробью называют позиционную запись дроби. Она выглядит следующим образом:

    ± a 1 a 2 … a n , b 1 b 2 … {\displaystyle \pm a_{1}a_{2}\dots a_{n}{,}b_{1}b_{2}\dots }

    Пример: 3,141 5926 {\displaystyle 3{,}1415926} .

    Часть записи, которая стоит до позиционной запятой, является целой частью числа (дроби), а стоящая после запятой — дробной частью . Всякую обыкновенную дробь можно преобразовать в десятичную, которая в этом случае либо имеет конечное число знаков после запятой, либо является периодической дробью .

    Вообще говоря, для позиционной записи числа́ можно использовать не только десятичную систему счисления, но и другие (в том числе и специфические, такие, как фибоначчиева).

    Значение дроби и основное свойство дроби

    Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные.

    0 , 999… = 1 {\displaystyle 0,999…=1} — две разные дроби соответствуют одному числу.

    Действия с дробями

    В этом разделе рассматриваются действия над обыкновенными дробями. О действиях над десятичными дробями см. Десятичная дробь .

    Приведение к общему знаменателю

    Для сравнения, сложения и вычитания дробей их следует преобразовать (привести ) к виду с одним и тем же знаменателем. Пусть даны две дроби: a b {\displaystyle {\frac {a}{b}}} и c d {\displaystyle {\frac {c}{d}}} . Порядок действий:

    После этого знаменатели обеих дробей совпадают (равны M ). Вместо наименьшего общего кратного можно в простых случаях взять в качестве M любое другое общее кратное, например, произведение знаменателей. Пример см. ниже в разделе Сравнение.

    Сравнение

    Чтобы сравнить две обыкновенные дроби, следует привести их к общему знаменателю и сравнить числители получившихся дробей. Дробь с бо́льшим числителем будет больше.

    Пример. Сравниваем 3 4 {\displaystyle {\frac {3}{4}}} и 4 5 {\displaystyle {\frac {4}{5}}} . НОК(4, 5) = 20. Приводим дроби к знаменателю 20.

    3 4 = 15 20 ; 4 5 = 16 20 {\displaystyle {\frac {3}{4}}={\frac {15}{20}};\quad {\frac {4}{5}}={\frac {16}{20}}}

    Следовательно, 3 4

    Сложение и вычитание

    Чтобы сложить две обыкновенные дроби, следует привести их к общему знаменателю. Затем сложить числители, а знаменатель оставить без изменений:

    1 2 {\displaystyle {\frac {1}{2}}} + = + = 5 6 {\displaystyle {\frac {5}{6}}}

    НОК знаменателей (здесь 2 и 3) равно 6. Приводим дробь 1 2 {\displaystyle {\frac {1}{2}}} к знаменателю 6, для этого числитель и знаменатель надо умножить на 3.
    Получилось 3 6 {\displaystyle {\frac {3}{6}}} . Приводим дробь 1 3 {\displaystyle {\frac {1}{3}}} к тому же знаменателю, для этого числитель и знаменатель надо умножить на 2. Получилось 2 6 {\displaystyle {\frac {2}{6}}} .
    Чтобы получить разность дробей, их также надо привести к общему знаменателю, а затем вычесть числители, знаменатель при этом оставить без изменений:

    1 2 {\displaystyle {\frac {1}{2}}} — = — 1 4 {\displaystyle {\frac {1}{4}}} = 1 4 {\displaystyle {\frac {1}{4}}}

    НОК знаменателей (здесь 2 и 4) равно 4. Приводим дробь 1 2 {\displaystyle {\frac {1}{2}}} к знаменателю 4, для этого надо числитель и знаменатель умножить на 2. Получаем 2 4 {\displaystyle {\frac {2}{4}}} .

    Умножение и деление

    Чтобы умножить две обыкновенные дроби, нужно перемножить их числители и знаменатели:

    a b ⋅ c d = a c b d . {\displaystyle {\frac {a}{b}}\cdot {\frac {c}{d}}={\frac {ac}{bd}}.}

    В частности, чтобы умножить дробь на натуральное число, надо числитель умножить на число, а знаменатель оставить тем же:

    2 3 ⋅ 3 = 6 3 = 2 {\displaystyle {\frac {2}{3}}\cdot 3={\frac {6}{3}}=2}

    В общем случае, числитель и знаменатель результирующей дроби могут не быть взаимно простыми, и может потребоваться сокращение дроби, например:

    5 8 ⋅ 2 5 = 10 40 = 1 4 . {\displaystyle {\frac {5}{8}}\cdot {\frac {2}{5}}={\frac {10}{40}}={\frac {1}{4}}.}

    Чтобы поделить одну обыкновенную дробь на другую, нужно умножить первую на дробь, обратную второй:

    a b: c d = a b ⋅ d c = a d b c , c ≠ 0. {\displaystyle {\frac {a}{b}}:{\frac {c}{d}}={\frac {a}{b}}\cdot {\frac {d}{c}}={\frac {ad}{bc}},\quad c\neq 0.}

    Например,

    1 2: 1 3 = 1 2 ⋅ 3 1 = 3 2 . {\displaystyle {\frac {1}{2}}:{\frac {1}{3}}={\frac {1}{2}}\cdot {\frac {3}{1}}={\frac {3}{2}}.}

    Преобразование между разными форматами записи

    Чтобы преобразовать обыкновенную дробь в дробь десятичную, следует разделить числитель на знаменатель. Результат может иметь конечное число десятичных знаков, но может быть и бесконечной

     

1.2.1. Обыкновенные дроби



Глава 1. Арифметика

1.2.

1.2.1.

Можно еще больше расширить числовое множество – так, чтобы операция деления над натуральными числами была выполнима всегда. Для этого введем понятие дроби.

Если n = 1, то дробь имеет вид и её часто записывают просто m. Отсюда, в частности, следует, что любое натуральное число представимо в виде обыкновенной дроби со знаменателем 1.

Например, так как Из этого определения следует, что дробь равна любой дроби вида где m – натуральное число. В самом деле, так как то   Итак, мы готовы сформулировать следующее правило.

Основное свойство дроби

Если числитель и знаменатель данной дроби умножить или разделить на одно и то же число, неравное нулю, то получится дробь, равная данной.

С помощью основного свойства дроби можно заменить данную дробь другой дробью, равной данной, но с меньшими числителем и знаменателем. Такая замена называется сокращением дроби. Например, (здесь числитель и знаменатель разделили сначала на 2, а потом ещё на 2). Сокращение дроби можно провести тогда и только тогда, когда её числитель и знаменатель не являются взаимно простыми числами. Если же числитель и знаменатель данной дроби взаимно просты, то дробь сократить нельзя, например, – несократимая дробь.

Модель 1.5. Сокращение обыкновенных дробей

 

Справедливо следующее утверждение (его мы докажем ниже):

Всякую неправильную дробь можно представить в виде суммы натурального числа и правильной дроби.

 

Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, Чтобы сравнить две дроби с разными числителями и знаменателями, нужно преобразовать обе дроби так, чтобы их знаменатели стали одинаковыми. Такое преобразование называется приведением дробей к общему знаменателю.

Модель 1.6. Сравнение обыкновенных дробей

Пусть, например, даны две дроби  и  Умножим числитель и знаменатель первой дроби на 7, получим Умножим числитель и знаменатель второй дроби на 4, получим Итак, две дроби и приведены к общему знаменателю:

Теперь знаменатели этих дробей одинаковы, значит, Следовательно, Ясно, что две дроби можно привести не к единственному общему знаменателю. Так, в нашем примере дроби  и  можно привести к знаменателю 56. В самом деле:

Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся одновременно на 4 и 7. Однако обычно стараются привести дроби к наименьшему общему знаменателю, который равен наименьшему общему кратному знаменателей двух данных дробей. Пример 1

Привести дроби к наименьшему общему знаменателю:  и 


В рассмотренном примере числа 4 и 3 называют дополнительными множителями для первой и второй дроби соответственно.

 

Теперь мы можем определить арифметические действия с дробями.

Сложение. Если знаменатели дробей одинаковы, то чтобы сложить эти дроби, нужно сложить их числители; знаменатель остаётся прежним, то есть

Если знаменатели данных дробей разные, то дроби нужно сначала привести к общему знаменателю, а потом поступить, как описано выше.

Вычитание. Если две дроби имеют одинаковые знаменатели, то

Если знаменатели данных дробей различны, то сперва приводят дроби к общему знаменателю, а потом вычитают их по вышеприведённой формуле.

Модель 1.7. Сложение и вычитание обыкновенных дробей

Умножение. Произведение двух дробей равно дроби, числитель которой равен произведению числителей данных дробей, а знаменатель равен произведению их знаменателей, то есть

Например,

Деление. Деление дробей осуществляют следующим образом:

Например,

В случае умножения и деления смешанных чисел всегда удобно переходить к неправильным дробям.

Модель 1.8. Умножение и деление обыкновенных дробей

Пример 2

Сложить две дроби и Ответ представить в виде неправильной дроби.

Имеем:

Ответ. 


Пример 3

Сложить две дроби и Ответ представить в виде неправильной дроби.

Имеем:

Ответ. 


Теперь можно показать, что любую неправильную дробь можно представить в виде суммы натурального числа и правильной дроби (или в виде натурального числа, если дробь такова, что число m кратно n, например, ).

Пример 4

Представить неправильную дробь в виде суммы натурального числа и правильной дроби: 1) 2)


Всякую неправильную дробь можно представить в виде смешанного числа (или в виде натурального числа). Понятно также, что верно и обратное: всякое смешанное число может быть представлено в виде неправильной дроби. Например,

Пример 5

Выполнить действия.






Виды фракций | Важные примечания | Решенные примеры

Прежде чем разбираться с типами дробей, вспомним дроби. Дробь — это часть или часть любого количества из целого, где целое может быть любым числом, определенным значением или вещью. Во многих ситуациях в реальном времени каждая измеряемая величина не может быть абсолютным целым числом. Следовательно, нам, возможно, придется иметь дело с частями целого или частями целого. Здесь на помощь приходит концепция дробей. В этом уроке давайте узнаем о различных типах дробей, таких как правильные и неправильные дроби, смешанные дроби, эквивалентные дроби, подобные и непохожие дроби.

Что такое дроби?

Дробь состоит из двух частей: числителя и знаменателя. Числитель — это число, помещенное вверху, а число, помещенное внизу, называется знаменателем. В числителе указывается количество рассматриваемых частей, а в знаменателе — общее количество частей в целом.

Хотя существует много типов дробей, на основе числителя и знаменателя различаются три основных типа дробей:

  • Правильные дроби
  • Неправильные фракции
  • Смешанные фракции

Правильные дроби

Дробь, числитель которой меньше знаменателя, называется правильной дробью.Например, 3/12 и 2/5 — правильные дроби, потому что 3 <12 и 2 <5. Пример: Сэм получил плитку шоколада и разделил ее на 3 равные части. Он взял 1 часть и отдал 2 части своей сестре Саре. Вы представляете долю Сэма как 1/3, а долю Сары как 2/3. Обе эти дроби считаются правильными дробями.

Неправильные дроби

Дробь, числитель которой больше или равен знаменателю, называется неправильной дробью. Например, 5/2 и 8/7 — неправильные дроби, потому что 5> 2 и 8> 7.

Смешанные фракции

Смешанная дробь — это смесь целого числа и правильной дроби. Например, \ (1 \ dfrac {3} {4} \) и \ (3 \ dfrac {4} {7} \) — это смешанные числа или смешанные дроби. В первом примере 1 — это целая часть числа, а 3/4 — правильная дробь. Во втором примере 3 — это целая часть числа, а 4/7 — правильная дробь.

Теперь давайте изучим типы дробей, которые классифицируются по группам. Когда группа фракций классифицируется, они определяют сравнение между двумя или более фракциями.Они делятся на следующие категории:

  • Нравится фракция
  • В отличие от дробей
  • Эквивалентные фракции

Нравится Дроби

Если знаменатели двух или более дробей совпадают, то они называются дробями. Например, 1/6, 2/6, 3/6, 5/6 и т. Д. Мы можем выполнять сложение и вычитание дробей только для одинаковых дробей.

В отличие от дробей

Если знаменатели двух или более дробей различны, то дроби называются непохожими дробями.Например, 1/2, 1/3, 2/5, 3/6 и т. Д. Если дроби не совпадают, при сложении или вычитании дробей мы преобразуем их в одинаковые дроби.

Эквивалентные дроби

Эквивалентные дроби — это дроби, которые имеют разные числители и разные знаменатели, но при упрощении или уменьшении равны одному и тому же значению. Например, 2/4, 3/6, 4/8 равны 1/2. Итак, эти дроби являются эквивалентными дробями.

Несоответствующая фракция смешанной фракции

Чтобы преобразовать неправильные дроби в смешанные, нам нужно разделить числитель на знаменатель.Затем мы записываем его в форме смешанного числа, помещая частное как целое число, остаток как числитель и делитель как знаменатель. Давайте рассмотрим следующий пример, чтобы лучше понять это. Пусть неправильная дробь будет 12/5. Чтобы преобразовать его в смешанную дробь, выполните следующие действия:

  • Разделить 12 на 5.
  • При делении получаем частное как 2, а остаток как 2.
  • Частное становится частью целого числа, а остаток 2 становится новым числителем, а знаменатель остается прежним.
  • Таким образом, смешанная дробь представлена ​​как \ (2 \ dfrac {2} {5} \)

Смешанная фракция к неправильной фракции

Смешанная фракция — это смесь целого числа и правильной дроби. Чтобы преобразовать смешанную дробь в неправильную дробь, нам нужно умножить знаменатель на целую часть числа, а затем прибавить числитель к произведению. Результат будет новым числителем, тогда как знаменатель останется прежним.Давайте рассмотрим следующий пример, чтобы лучше понять это. Пусть смешанная дробь равна \ (7 \ dfrac {3} {5} \). Чтобы преобразовать это в неправильную дробь, мы выполняем следующие шаги:

  • Умножаем целое число 7 на знаменатель 5. Итак, получаем 7 × 5 = 35
  • Сложите произведение с числителем: 35 + 3 = 38
  • Выразите его в виде дроби со знаминателем 5, то есть 38/5

Важные моменты

Ниже приведены несколько важных моментов, связанных с различными типами дробей:

  • Значение неправильной дроби всегда больше 1.
  • Значение правильной дроби всегда меньше 1.
  • Смешанная дробь — это комбинация целого числа и дроби.
  • Смешанная дробь может быть преобразована в неправильную дробь и наоборот. Например, \ (2 \ dfrac {1} {2} \) = 5/2.

Типы дробей Связанные темы

Часто задаваемые вопросы о типах дробей

Сколько существует типов дробей?

Когда дроби классифицируются на основе числителя и знаменателя, они делятся на правильные дроби, неправильные дроби и смешанные дроби.Когда они классифицируются по группам, они классифицируются как одинаковые дроби, в отличие от дробей и эквивалентных дробей.

Какие три типа дробей?

Три типа дробей, основанные на числителе и знаменателе: правильные, неправильные и смешанные дроби. Например, 2/5, 3/4 называются правильными дробями, потому что здесь числитель меньше знаменателя; 5/2, 8/3 называются неправильными дробями, потому что числитель больше знаменателя; и \ (1 \ dfrac {2} {6} \) и \ (3 \ dfrac {1} {4} \) называются смешанными дробями, потому что они состоят из целого числа и правильной дроби.

Как вы решаете дроби?

Дроби могут быть решены в соответствии с категорией, к которой они принадлежат. Вот различные способы решения дробей.

  • Чтобы складывать и вычитать подобные дроби, мы просто решаем числители, а знаменатели остаются прежними. Например, 1/3 + 4/3 = 5/3, 9/4 — 3/4 = 6/4
  • Ведь, в отличие от дробей, они сначала преобразуются в одинаковые дроби, чтобы их сложить или вычесть. Например, чтобы сложить 1/3 + 1/2, нам нужно найти НОК знаменателей и преобразовать данные дроби в аналогичные дроби, которые им эквивалентны.Здесь они преобразуются и записываются как 2/6 + 3/6, а затем мы добавляем их, что дает (2 + 3) / 6 = 5/6
  • Умножение двух данных дробей производится путем умножения числителей и затем умножения знаменателей. После этого, при необходимости, они сокращаются до минимального срока. Например, 1/3 × 1/2 = 1/6
  • Разделение на дроби производится путем умножения первой дроби на обратную величину второй дроби. Например, 1/3 ÷ 1/2 = 1/3 × 2/1 = 2/3

Что такое правильные дроби?

Дробь, в которой числитель меньше знаменателя, называется правильной дробью.Пример: 5/12, 3/8.

Что такое две части дроби?

Дробь состоит из двух частей: числителя и знаменателя.

  • Числитель: числитель представляет собой число, стоящее в верхней части дроби. Он представляет собой часть, которая считается частью целого. Например, в 5/6 числитель — 5.
  • Знаменатель: Знаменатель показывает часть, которая находится внизу дроби. Он представляет собой общее количество деталей.Например, в 5/6 знаменатель — 6.

Что такое смешанная фракция?

Дробь, представляющая собой комбинацию целого числа и правильной дроби, называется смешанной дробью. Например, \ (2 \ dfrac {1} {3} \) смешанная дробь, где 2 — целое, 1/2 — правильная дробь.

Как узнать, что дроби похожи?

Подобные дроби также известны как одинаковые дроби. Две или более дроби, имеющие один и тот же знаменатель, называются одинаковыми дробями.Другими словами, дроби с одинаковыми знаменателями называются подобными дробями. Например, 1/7, 2/7, 5/7, 6/7 — все как дроби с одним и тем же знаменателем, то есть 7.

Что такое виды фракций?

Виды дробей

Дробь представляет собой часть целого. В дроби верхнее число является числителем, а нижнее число — знаменателем.

Например :

У Коби есть шоколад с 5 плитками.Если он съест 3 плитки, то доля съеденного шоколада составит

.

Следовательно, числитель и знаменатель дроби сообщают нам, сколько частей целого. Знаменатель сообщит нам о количестве равных частей, на которые разделено все целое, а числитель сообщит нам, сколько из общего количества частей нам нужно заштриховать.

Остается 2 разных случая:

Случай 1- Когда дробь меньше целого

Дроби, которые меньше целого, называются правильными дробями.

Случай 2- Когда дробь больше целого

Есть два разных способа записать дробь, которая больше целого:

1. Неправильная фракция

2. Смешанная фракция

Пример 1 : Какая доля затененной части в данном квадрате?

В квадрате 4 части и 1 часть заштрихована.Доля заштрихованной части составляет 1 4 .

Аппликации фракций

Некоторые приложения дробей:

(i) Дроби используются для определения части целого числа.

(ii) Мы используем дроби для распределения.

Например: Чтобы раздать 6 яблок между 2 друзьями, мы можем найти 1 2 из 6. Мы можем дать по 3 яблока каждому другу.

Виды фракций

Есть три типа дробей:

(i) Правильные дроби

(ii) Неверные дроби

(iii) Смешанные фракции

Правильные дроби

Правильные дроби относятся к тем дробям, у которых числитель меньше знаменателя.Правильная фракция — это часть целого. Например, 1 2 , 3 4 , 5 9 , 11 13

Неверные дроби

Неправильные дроби — это дроби, у которых числитель больше знаменателя. Они больше, чем целое. Например, 7 5 , 9 5

Смешанные фракции

Когда мы объединяем целое число и правильную дробь, мы получаем смешанную дробь.

Интересный факт

  • Египтяне изобрели дроби еще в 1800 году до нашей эры. Они использовали дроби для ведения учета земли.

6 типов дробей, которые вам необходимо знать

Всего существует шесть различных типов дробей. Три основных типа: правильные дроби, неправильные дроби и смешанные дроби. Давайте исследуем свойства дроби и определим каждый тип.

Что такое дробь?

Дробь — это число, у которого есть числитель (верхнее число) и знаменатель (нижнее число):

Мы используем термин дробь как дескриптор частей целого. Знаменатель представляет собой целую часть дроби. Числитель представляет количество равных частей, на которые будет разделено все целое.

Если вы разрежете пиццу на четыре равных части, знаменатель будет равен 4. Если вы хотите показать, сколько пиццы составляет один кусок, вы должны использовать единичную дробь.Это относится к дробям с числителем 1. Итак, вот дробь, описывающая каждый равный срез:

Затененная часть ниже также представляет одну четверть пиццы:

Отношение между разными знаменателями и числителями определяет, какой это вид дроби.

Давайте посмотрим на различные типы дробей.

Правильные дроби

У этого типа дроби числитель меньше знаменателя:

Частное или деление правильной дроби всегда дает значение меньше единицы.

Неправильные дроби

Это дробь, у которой числитель больше знаменателя:

Поскольку значение числителя больше, частное неправильной дроби всегда будет приводить к значению, большему или равному 1.

Смешанные фракции

Этот тип дроби получается при объединении натурального числа и дроби:

Смешанную дробь можно преобразовать в неправильную дробь, умножив целое число на знаменатель и прибавив числитель.Полученное число будет служить числителем над исходным знаменателем:

.

Поскольку смешанные дроби имеют целую часть, они больше, чем значение 1.

Подобные, отличные и эквивалентные дроби

Остальные три типа дробей подобны дробям, в отличие от дробей, и эквивалентным дробям. Вот определения и примеры каждого типа:

Подобные дроби: Наборы дробей с одинаковыми знаменателями

В отличие от дробей: Наборы дробей с разными знаменателями

Эквивалентные дроби: группа из двух или более дробей, которые в упрощенном виде представляют одно и то же значение.

Зачем нужно знать разные типы дробей

Когда вы можете решить, является ли дробь неправильной, правильной или смешанной, вы можете определить, будет ли ее частное больше, меньше или равно 1.Кроме того, вы можете группировать дроби на основе их сходства или различия, определяя, похожи ли они на дроби, отличны от них или эквивалентны.

Дополнительные домашние задания по математике

Какие бывают 8 типов фракций? — Mvorganizing.org

Какие бывают 8 типов фракций?

Различные типы фракций:

  • Подобные дроби: Дроби с одинаковыми знаменателями называются одинаковыми дробями.
  • Одинаковые дроби числителя: Множители, имеющие одинаковые числители, называются дробями одного и того же числителя.
  • Доли единицы:
  • Правильные дроби:
  • Неправильные дроби:
  • Смешанные фракции:

Что такое дробь и сколько видов дроби?

Дробь записывается как количество подсчитываемых равных частей, называемое числителем, по отношению к количеству частей в целом, называемым знаменателем. Эти числа разделены линией. Есть три разных типа фракций. Для частей чисел меньше единицы числитель меньше знаменателя.

Что такое дробь, приведи 5 примеров?

Пример: 4/3, 2/3 и т. Д. Неправильная дробь: числитель больше или равен знаменателю. Неправильная дробь возникает, когда числитель больше или равен знаменателю. Вот несколько примеров неправильных дробей: 4/3, 5/6 и т. Д. Izvoru47 и еще 28 пользователей сочли этот ответ полезным.

Какие 3 части дроби?

Как вверху, так и внизу Эти два слова, числитель и знаменатель, являются частями дроби.В числителе указывается верхнее число. На картинке выше числитель 3. Знаменатель — нижнее число.

Какие бывают 7 видов дроби?

Шесть видов дробей: правильные дроби, неправильные дроби, смешанные дроби, такие как дроби, в отличие от дробей и эквивалентные дроби.

Что такое дробь для детей?

Дробь — это часть целого числа и способ разделить число на равные части. Оно записывается как количество подсчитываемых равных частей, называемое числителем, по отношению к количеству частей в целом, называемым знаменателем.Размер дроби также можно сравнить, чтобы найти наименьшую или наибольшую дробь.

Что такое дробь простыми словами?

Фракции представляют собой равные части целого или коллекции. Дробь целого: когда мы делим целое на равные части, каждая часть является частью целого. Например, фракция коллекции: дроби также представляют собой части набора или коллекции.

Как научить сравнивать дроби?

Как преподавать:

  1. Объясните: числовые линии помогают сравнивать дроби.Попросите учащихся посмотреть на свои числовые линии и указать на начальную точку, конечную точку и дроби между ними.
  2. Используйте числовую линию, чтобы решить задачу, которая может им понравиться.
  3. Подсказка с дополнительными вопросами.
  4. Практика.

Как сравнить две дроби с разными знаменателями?

Если знаменатели разные, вы можете сначала найти общий знаменатель, а затем сравнить числители. Две дроби являются эквивалентными дробями, если они представляют одну и ту же часть целого.

Как быстро сравнивать дроби?

Вместо того, чтобы переписывать их в терминах общего знаменателя, самый быстрый способ сравнить дроби — это преобразовать их в десятичные числа. После этого вы можете расположить сравниваемые дроби в порядке возрастания или убывания, просто упорядочив их по десятичным представлениям.

Как упростить дроби?

Как уменьшить дроби

  1. Запишите множители числителя и знаменателя.
  2. Определите наибольший общий коэффициент между ними.
  3. Разделите числитель и знаменатель на наибольший общий множитель.
  4. Запишите уменьшенную дробь.

Как называются дроби с разными знаменателями?

Дроби с разными знаменателями называются разнородными дробями. Здесь знаменатели дробей имеют разные значения. Например, 2/3, 4/9, 6/67, 9/89 не похожи на дроби.

Какая дробь больше 2/3 или 3 4?

Итак, 34 больше 23.

Как складывать дроби с разными знаменателями?

Если знаменатели не совпадают, вы должны использовать эквивалентные дроби, у которых есть общий знаменатель. Для этого вам нужно найти наименьшее общее кратное (НОК) двух знаменателей. Чтобы сложить дроби с разными знаменателями, переименуйте дроби с общим знаменателем. Затем добавьте и упростите.

Как объяснить сложение дробей?

Для сложения дробей есть три простых шага:

  1. Шаг 1. Убедитесь, что нижние числа (знаменатели) совпадают.
  2. Шаг 2: сложите верхние числа (числители), поставьте полученный ответ над знаменателем.
  3. Шаг 3: Упростите дробь (при необходимости)

Как решить смешанные дроби?

Чтобы преобразовать неправильную дробь в смешанную, выполните следующие действия:

  1. Разделите числитель на знаменатель.
  2. Запишите ответ целиком.
  3. Затем запишите остаток над знаменателем.

Как умножать дроби?

Первый шаг при умножении дробей — это умножение двух числителей.Второй шаг — умножить два знаменателя. Наконец, упростите новые дроби. Перед умножением дроби также можно упростить, вычленив общие множители в числителе и знаменателе.

Почему вы скрещиваете дроби?

Причина, по которой мы скрещиваем дроби умножения, заключается в их сравнении. Перекрестное умножение дробей говорит нам, равны ли две дроби или какая из них больше.

Как делить дроби?

Первый шаг к делению дробей — найти обратную величину (поменять местами числитель и знаменатель) второй дроби.Затем умножьте два числителя. Затем умножьте два знаменателя. Наконец, при необходимости упростите дроби.

Как складывать и умножать дроби?

Найдите новый числитель первой дроби. В числителе указывается число над чертой дроби. Чтобы найти новый числитель, сравните исходный знаменатель с ЖК-дисплеем. Определите, на какой коэффициент вам нужно умножить исходный знаменатель, чтобы получить ЖК-дисплей. Затем умножьте числитель на тот же коэффициент.

Вы сначала складываете или умножаете дроби?

Если знаменатели не совпадают: сначала сделайте их одинаковыми.Затем сложите или вычтите одинаковые дроби с одинаковыми знаменателями.

Вы сначала складываете или умножаете в уравнениях?

Порядок операций говорит вам сначала выполнить умножение и деление, работая слева направо, прежде чем выполнять сложение и вычитание. Продолжайте выполнять умножение и деление слева направо. Затем сложите и вычтите слева направо.

Что такое дробь и сколько существует типов дробей

Что такое дробь и сколько типов дробей существует

Дробь

Число, которое сравнивает часть объекта или набор с целым, особенно частное двух целых чисел, записывается в форме xly, называется дробью .Дробь 1/3, означающая деление 1 на 3, может быть представлена ​​как 1 карандаш из коробки с 3 карандашами.
Дробь — это (i) часть целого. (ii) часть коллекции.

Дробь состоит из двух чисел, разделенных горизонтальной чертой. Число над горизонтальной линией называется числителем, а число под горизонтальной линией — знаменателем дроби.

Дробь как часть целого
Дробь — это часть целого.Представьте себе пиццу, нарезанную ломтиками. Из всех ломтиков получается 1 целая пицца. Каждый кусочек — это кусок пиццы.
Таня и Саня хотят разделить пиццу поровну
Они решают разрезать пиццу с середины и разделить ее на две равные части. Каждая часть называется
половиной целого и записывается как \ (\ frac {1} {2} \). Обе сестры получают равные доли. Часть \ (\ frac {1} {2} \) целого является дробью.
Точно так же мы можем взять множество примеров из нашей повседневной жизни, чтобы показать дробь как часть целого.
На этом рисунке мы разделили треугольник на 3 равные части. Затененная часть показывает одну часть из трех, то есть \ (\ frac {1} {3} \). Здесь \ (\ frac {1} {3} \) — дробь, которая является частью всего треугольника.

Подробнее:

Дробь является частью коллекции
Дробь представляет собой части коллекции, числитель — это количество частей, которые у нас есть, а знаменатель — общее количество частей в коллекции.
Возьмем коллекцию из 12 звезд, и мы хотим заштриховать \ (\ frac {3} {4} \) коллекции.
Чтобы найти \ (\ frac {3} {4} \) из 12 звезд, мы разделим 12 звезд на четыре равные части.
Каждая часть содержит 3 звезды. Теперь мы можем заштриховать 3 части из 4 частей.
При подсчете находим, что общее количество закрашенных звезд равно 9.
Другими словами, \ (\ frac {3} {4} \) из 12 звезд = 9 звезд.

Виды фракций
  1. Подобные дроби: Дроби, имеющие одинаковые знаменатели, называются подобными дробями.
    Примеры: \ (\ frac {1} {7} \), \ (\ frac {3} {7} \), \ (\ frac {2} {7} \), \ (\ frac {6} { 7} \) и т. Д. Подобны дробям.
  2. В отличие от дробей: Дроби, имеющие разные знаменатели, называются разнородными дробями.
    Примеры: \ (\ frac {2} {3} \), \ (\ frac {5} {7} \), \ (\ frac {6} {8} \), \ (\ frac {1} { 3} \) и т. Д. Не похожи на дроби.
  3. Дробь единицы: Дробь, у которой числитель равен 1, называется дробью единицы.
    Примеры: \ (\ frac {1} {3} \), \ (\ frac {1} {9} \), \ (\ frac {1} {8} \), \ (\ frac {1} { 5} \) и т. Д.все единицы дроби
  4. Правильная дробь: Дробь, числитель которой меньше знаменателя, называется правильной дробью.
    Примеры: \ (\ frac {2} {3} \), \ (\ frac {5} {7} \), \ (\ frac {1} {6} \), \ (\ frac {3} { 9} \) и т. Д. Все являются правильными дробями.
  5. Неправильная дробь: Дробь, числитель которой больше или равен знаменателю, называется неправильной дробью.
    Примеры: \ (\ frac {4} {3} \), \ (\ frac {7} {5} \), \ (\ frac {9} {9} \) и т. Д. — все неправильные дроби.
  6. Смешанная дробь: Дробь, представляющая собой комбинацию целого числа и правильной дроби, называется смешанной дробью. Все неправильные дроби можно записать в виде смешанных дробей.
    Пример: 2 \ (\ frac {1} {4} \) — это смешанная дробь, так как 2 — это целое число 4, а \ (\ frac {1} {4} \) — правильная дробь.
  7. Эквивалентная дробь: Если \ (\ frac {c} {d} = \ frac {m \ times a} {m \ times b} \), то дроби \ (\ frac {a} {b} \) и \ (\ frac {c} {d} \) называются эквивалентными дробями, потому что они представляют одну и ту же часть целого.

    Например, заштрихованные части каждой из следующих фигур одинаковы, но представлены разными дробными числами.

    Их называют эквивалентными дробями.
    Итак, мы пишем \ (\ frac {1} {2} = \ frac {2} {4} = \ frac {4} {8} \) и т. Д.
  8. Десятичные дроби: Дробь, знаменателем которой является любое из чисел 10,100,1000 и т. Д., Называется десятичной дробью.
    Например: \ (\ frac {8} {10}, \ frac {11} {100}, \ frac {17} {1000} \) и т. Д.являются десятичными дробями.
  9. Простые дроби: Дробь, знаменателем которой является целое число, кроме 10,100,1000 и т. Д., Называется вульгарной дробью.
    Например, \ (\ frac {2} {7}, \ frac {3} {8}, \ frac {11} {17} \) и т. Д. Являются вульгарными дробями.

Математика

Правильные, неправильные, дроби равные единице

Сегодня мы рассмотрим классификацию дробей: какие типы дробей бывают?

Мы можем классифицировать их согласно соотношению между числителем и знаменателем.

Правильная фракция

Представляющие число меньше 1. И как эти дроби идентифицируются? Все дроби с числами меньше 1 характеризуются тем, что числитель меньше знаменателя. Например:


Неправильная фракция

Те, которые представляют числа больше 1. И как эти дроби идентифицируются? Все дроби, представляющие числа больше 1, характеризуются числителем больше знаменателя.Например:

Доли равны единице

Те, значение которых равно 1. Они характеризуются равенством числителя и знаменателя.

Примеры фракционной классификации

Давайте посмотрим на несколько примеров классификации дробей:

\ (\ frac {25} {27} \) <1 , потому что числитель на меньше знаменателя: это правильная дробь .

\ (\ frac {1} {2} \) <1 , потому что числитель на меньше знаменателя: это правильная дробь .

\ (\ frac {5} {4} \) > 1 , потому что числитель на больше, чем знаменатель, на : это неправильная дробь .

\ (\ frac {180} {180} \) = 1 , потому что числитель равен знаменатель: это дробь , равная единице.

\ (\ frac {36} {3} \) > 1 , поскольку числитель на больше, чем знаменатель, на : это неправильная дробь .

\ (\ frac {6} {6} \) = 1 , потому что числитель равен знаменатель: это дробь , равная единице.

\ (\ frac {4} {2} \) > 1 , потому что числитель на больше, чем знаменатель, на : это неправильная дробь .

\ (\ frac {10} {10} \) = 1 , потому что числитель равен знаменатель: это дробь , равная единице.

\ (\ frac {200} {279} \) <1 , потому что числитель на меньше знаменателя на : это правильная дробь .

Что вы думаете об этом сообщении? Помогло ли это вам лучше понять классификацию дробей ? Если вы хотите узнать больше об элементарной математике, не стесняйтесь зарегистрироваться в Smartick и попробовать наш метод бесплатно.

Подробнее:

Развлечение — любимый способ обучения нашего мозга

Дайан Акерман

Smartick — увлекательный способ изучения математики
  • 15 веселых минут в день
  • Адаптируется к уровню вашего ребенка
  • Миллионы учеников с 2009 года

Команда по созданию контента.
Многопрофильная и многонациональная команда, состоящая из математиков, учителей, профессоров и других специалистов в области образования!
Они стремятся создать максимально возможное математическое содержание.

Правильные дроби

Правильная дробь имеет верхнее число
меньше его нижнее число

3 8

(три восьмых)

Примеры

Видите, как верхнее число меньше нижнего в каждом примере? Это делает его правильной дробью.

Три типа дробей

Дробь бывает трех видов:

Дроби

Дробь (например, 3 / 8 ) имеет два числа:

Числитель Знаменатель

Верхнее число — это числитель, это количество частей, которые у вас есть .
Нижнее число — это знаменатель, это количество части, целое делится на .

Пример:

3 / 4 означает:
  • У нас 3 детали
  • Каждая часть представляет собой четверть ( 1 / 4 ) целого

Итак, мы можем определить три типа дробей следующим образом:

Правильные дроби: Числитель меньше знаменателя
Примеры: 1 / 3 , 3 / 4 , 2 / 7
Неправильные фракции: Числитель больше (или равен) знаменателю
Примеры: 4 / 3 , 11 / 4 , 7 / 7
Смешанные фракции: Целое число и правильная дробь вместе
Примеры: 1 1 / 3 , 2 1 / 4 , 16 2 / 5

Правильные дроби

Итак, правильная дробь — это просто дробь, у которой числитель (верхнее число) меньше знаменателя (нижнее число).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *